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Abstract— Model predictive control (MPC) is a powerful
feedback technique that is often used in data-driven robotics.
The performance of data-driven MPC depends on the accuracy
of the model, which often requires careful tuning. Furthermore,
specifying the task with an objective function and synthesizing
a feedback policy are not straightforward and typically lead
to suboptimal solutions driven by trial and error. To address
these challenges, we present a method to jointly optimize the
data-driven system identification, task specification, and control
synthesis of unknown dynamical systems. We use our method to
develop AutoMPC3, a software package designed to automate
and optimize data-driven MPC. Empirical evaluation on the
pendulum swing-up, cart-pole swing-up, and half-cheetah run-
ning demonstrates that our method finds data-driven control
policies that outperform offline reinforcement learning, without
any hand-tuning.

I. INTRODUCTION

Model predictive control (MPC) is a powerful framework
for designing robot controllers. By leveraging knowledge of
the dynamics, it can predict and optimize a robot’s behavior
over a multi-step time horizon and has been demonstrated
to be effective on high-dimensional robots [32]. Moreover,
MPC has been used as a component of model-based re-
inforcement learning (RL) solvers for continuous control
problems to improve the sample complexity [9].

Successfully implementing MPC is challenging, as the
control performance relies heavily on the accuracy of the
model. For soft robots or robots with complex dynamics,
i.e., aerodynamic or hydrodynamic interactions, developing
a representation from first-principles can often be laborious
or even intractable. Alternatively, researchers are increasingly
relying on data-driven models using—among others— neural
networks [25], Gaussian processes [24], or Koopman oper-
ators [1]. On the other hand, system identification (SysID)
methods typically suffer from tedious hyperparameter tun-
ing, scalability issues, or limited model capacity [26]. Fur-
ther, when done manually, hyperparameter tuning is time-
consuming and prone to errors.

Besides model accuracy, the control performance of MPC
is also sensitive to factors such as the objective function,
including regularization terms, the planning horizon, and
state or control constraints. These hyperparameters create
a large search space that is often left largely unexploited
leading to suboptimal solutions. The optimizer must also
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be carefully chosen to exploit any nonlinearities in the dy-
namics. This is especially true for nonlinear objectives (e.g.,
“sparse rewards” in the RL community) and underactuated
nonlinear systems.

This paper tackles the challenges of MPC by automating
the process of joint SysID, task specification, and control
synthesis as an end-to-end, data-driven hyperparameter opti-
mization problem. For each hyperparameter setting, the sys-
tem learns a dynamics model from a training set, instantiates
an MPC controller, and evaluates closed-loop performance.
In addition it is often impractical to test controllers on
physical robots due to safety concerns and physical wear and
tear. We propose a cross-validation-like performance measure
that tests the controller on a simulation model learned
through SysID on a holdout set. This approach measures
the robustness of the controller to imperfect modeling and is
shown to correlate well with true performance.

We implement these methods in a software package,
AutoMPC, that aims to make MPC accessible to non-
experts in the same way that AutoML libraries such as
auto-sklearn [13] and AutoKeras [19] have done
for supervised machine learning. The package implements a
wide variety of SysID models (autoregression, Gaussian Pro-
cesses (GP), Koopman operators, SINDy, neural networks)
and optimizers (LQR, iLQR, direct transcription, and Model
Predictive Path Integral (MPPI) control), and presents an
open framework for contributors to add their own algorithms.
Experiments on nonlinear control benchmarks demonstrate
that AutoMPC can tune MPC pipelines to achieve superior
performance to a state-of-the-art offline reinforcement learn-
ing algorithm. Although initial hyperparameter settings yield
a learned dynamics model and optimizer that perform badly
on the true dynamics, some or all MPC controllers generated
by AutoMPC perform well within a couple of hours of
tuning. This suggests that AutoMPC can be a useful tool for
generating baseline controllers without requiring significant
human intervention or expertise.

II. RELATED WORK

Model Predictive Control: MPC is a widely used closed-
loop control approach in robotics that incorporates state
and control constraints [5], [25], [31]. For linear systems,
the theory of closed-loop stability has been established and
optimization is carried out efficiently with convex optimiza-
tion solvers or avoided by offline precomputation known as
explicit MPC [5]. However, for general nonlinear systems
the closed-loop behavior is not yet well understood and
successfully implementing MPC requires manual tuning.

Besides the high computational demand, MPC relies on
accurately modeling the system dynamics. Although it has
has been shown to achieve the desired performance when
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Fig. 1: The structure of the AutoMPC pipeline.

using models learned from data [9], inaccurate data-driven
representations can cause suboptimal performance and even
unstable control. Although robust MPC can address model
inaccuracy [3] for linear systems, robust nonlinear control
is harder to analyze and achieve. Our method addresses
this issue by automatically tuning the hyperparameters with
Bayesian optimization where the performance of the SysID,
task specification, and control synthesis is tuned end-to-end
on a simulated surrogate model.

System Identification and Data-driven Control: System
identification has been thoroughly explored [26] and theory
of data-driven control for linear systems is relatively well
developed, with regret bounds derived for policy gradient
methods [12]. However, nonlinear SysID and data-driven
control remains an open research question. Recently, there
has been significant interest in using deep neural networks
[20], [25], [34], GP based methods [24] and Koopman
operator theory [1], [27]. Both classical system identifica-
tion techniques and deep learning-based techniques require
careful hyperparameter tuning to obtain useful models.

Our approach is also related to model-based RL ap-
proaches [11], [30], [35], which explicitly learn a dynamics
model and rewards, and run an optimizer to generate the
agent’s policy. However, to generate experience model-based
RL accesses the true system, which is often infeasible or even
unsafe. Our setting is also related to offline RL, which does
not use online interaction with the robot [15], [21], [22].
AutoMPC is both offline and model-based, and also auto-
tuned.

AutoML and Controller Tuning: Influential AutoML
packages include auto-sklearn [13] and AutoKeras,
but these apply to the supervised learning setting. In the
control setting, a few authors have studied tuning MPC.
Marco et al. [28] tune a cost function to compensate for
errors in the dynamics model. Bayesian optimization has
been used by Bansal et al. [2] to tune a parametric linear
model to improve closed-loop performance, and by Piga et
al. [29] to optimize the control horizon. Forgione et al [14]
consider end-to-end MPC tuning, but they a) tune model
parameters of the learned model rather than hyperparameters,
which is susceptible to overfitting, and b) need access to the
true dynamics of the system. AutoMPC, on the other hand,
optimizes hyperparameters and does not require knowledge
of the system, but instead evaluates performance via a cross-
validation-like technique using surrogate dynamics.

III. METHODS

We automate MPC using the framework illustrated in
Fig. 1. As input, the user provides a dataset D of state/control

trajectories, a performance metric J , a set of initial states
I, and optional state and control constraints φ. A complete
MPC controller consists of a SysID model, learned from
a training subset, and an optimizer. Each component has
number of tunable hyperparameters (Sec. III-B), with a hy-
perparameter setting denoted a configuration. The controller
defined by a configuration is optimized end-to-end using
Bayesian optimization (Sec. III-C).

At the start of tuning, D is randomly partitioned a SysID
training set DI ⊂ D and a holdout dataset DH = D ∖ DI ,
which is used to train a surrogate dynamics model. We
then evaluate configurations in an order selected by Bayesian
optimization. To evaluate a configuration, we synthesize the
corresponding MPC by learning a dynamics model from DI ,
initializing the optimizer, and selecting the objective function
based on the configuration hyperparameters. Control actions
are then selected by the optimizer using the dynamics model
and objective function. We then evaluate the closed-loop
performance of the MPC from the initial states I using the
surrogate dynamics model. After a fixed number of iterations,
the best performing controller is provided as output. Details
are given below.

A. Problem Definition

We assume a fully-observable discrete-time dynamical
system with state xt ∈ Rn and control ut ∈ Rm. We
use the notation xt∶r and up∶q to denote the sequences
(xt, xt+1, . . . xr) and (up, up+1, . . . , uq) respectively. The
dynamics of the system are written as

xt+1 = f(xt, ut).
At each time step, MPC optimizes a trajectory over a fixed
horizon H with respect to some objective function L and
constraints φ. This optimization has the form

min
xt∶t+H ,ut∶t+H−1

L(xt∶t+H ,ut∶t+H−1)

s.t. xi+1 = f(x0∶i,u0∶i) and φ(xt∶t+H ,ut∶t+H−1) ≤ 0.
We do not have access to the true system dynamics, so we
must estimate an approximate model f̂ identified from D.

The user designates a performance metric J(x1∶T ,u1∶T )
which scores rolled-out trajectories. We allow J to have
arbitrary form. The terminal time T may be constant or dy-
namically determined by some goal condition, also specified.

Note that we distinguish the objective L used in the
optimizer from the performance metric J , for several reasons.
First, certain optimization methods require L to have a
particular structure. For example, LQR requires L to be
quadratic while iLQR requires L to be twice differentiable.
Second, J is evaluated over the entire trajectory while L
is only optimized over a fixed horizon H , and optimizing
repeatedly over a fixed horizon may not lead to good overall
performance. This is particularly true for metrics that include
terminal cost, since terminal cost does not provide useful
guidance to the MPC until near the end of the trajectory.
Third, certain optimizers cannot accept state or control
constraints, so the objective function may encode constraints
as barriers in the objective function. Finally, L may include



regularization terms that penalize deviation from the training
data.

Note that learning f̂ from D can be viewed as supervised
learning, but the MPC context adds additional considerations.
For example, a simpler, less accurate model may be preferred
to a more complex, more accurate one if the former is
cheaper to evaluate, suffers from fewer local minima, or
is less prone to overfitting. Moreover, the generalization
performance of the model outside of the data distribution
is critical, as the MPC may guide the system away from the
distribution in order to “exploit” the model inaccuracies and
produce unrealistic trajectories. This is known as distribution
shift and can be partially alleviated by tuning L to penalize
trajectories which deviate from the data distribution.

B. Hyperparameters

Hyperparameters can take on a mixture of continuous,
integer, and categorical values. We also allow for conditional
relationships between hyperparameters. For example, a con-
tinuous hyperparameter specifying the weight of a particular
term in the objective function can be conditioned on a
boolean hyperparameter which turns the term on or off.

First, we let HS denote the set of hyperparameters for the
SysID method. For example, the linear autoregression model
uses an integer k to control the size of the state history.
Next, we let HL denote the set of objective function hyper-
parameters. For example, a quadratic cost function might
rescale the diagonal values of the cost matrices. Finally,
we let HO denote the set of optimizer hyperparameters.
This includes the planning horizon H as well as any other
optimizer-specific settings, e.g., MPPI sets the number of
trajectories that are sampled in each iteration. Considering
these components together, we have a joint hyperparameter
space H = HS ×HL ×HO for the end-to-end system.

C. Tuning with Surrogate Functions

AutoMPC implements tuning in three modes: 1) End-
to-end tuning, which tunes the entire pipeline for closed-
loop performance, 2) SysID tuning, which only tunes the
dynamics model for accuracy, 3) Decoupled tuning, which
first performs SysID tuning and then tunes the optimizer for
closed-loop performance.

To search the hyperparameter space H, we use the
Bayesian optimization algorithm Sequential Model-based
Algorithm Configuration (SMAC) [18], as implemented in
the Python package smac3. SMAC builds a model using a
random forest to predict the performance of a configuration h
before it is evaluated. This model is used to select the next
configuration to evaluate. The use of a random forest, in
contrast to the Gaussian Process models used by many other
Bayesian optimization algorithms, allows SMAC to handle
structured hyperparameter spaces that contain a mixture of
discrete and continuous hyperparameters, and conditional
hyperparameter relationships. The details of the three tuning
modes are as follows:

a) End-to-End tuning: Given a configuration h ∈ H,
we learn f̂ from DI and derive an MPC controller πh,f̂ . We
define the controller’s true performance as

J[h] = ∑
si∈I

J(xi
1∶T ,u

i
1∶T−1) (1)

where I is the set of initial states, xi1 = si, and each trajectory
is generated by a closed-loop rollout of πh,f̂ to the true
dynamics f .

Without access to f , we define a surrogate performance
Ĵ that is identical to (1) except the rollout is performed with
respect to a learned surrogate dynamics model f̂surr, which
is learned on the holdout set DH . We avoiding sharing data
between system ID and surrogate training sets to ensure that
the surrogate is not identical to model f̂ used for control. We
use Bayesian optimization to minimize Ĵ over H. Although
Ĵ is an imperfect approximation of J, our experiments
show that it is still useful for tuning. Specifically, for two
controllers π1, π2 with a non-negligible difference in J(π1)
and J(π2), it almost always holds that Ĵ(π1) < Ĵ(π2).

b) SysID Tuning: This optimizes the SysID hyperpa-
rameters HS for accuracy, akin to classical model selection.
AutoMPC allows the choice to tune for 1-step prediction
accuracy or k-step prediction accuracy on the testing set
DH . However, experiments do not show a major controller
performance difference between these methods.

c) Decoupled tuning: This approach first performs
SysID tuning to fix f̂ and then tunes the configuration over
HL ×HO to optimize performance Ĵ.

IV. IMPLEMENTATION

We provide an implementation of AutoMPC as an open-
source Python library. We designed the package so that:
1) AutoMPC should be accessible enough that a non-
expert should be able to achieve a performant MPC with
minimal manual tuning; 2) AutoMPC should be useful to
experts, providing tools to analyze system performance,
and allowing a combination of automatic and manual fine-
tuning; 3) AutoMPC should provide a uniform API for
components, allowing users to implement their own methods
to be tuned by AutoMPC. The components implemented in
the current version of AutoMPC and their hyperparameters
are summarized in Fig. I and described in more detail next.

A. System Identification

Each SysID technique estimates the dynamics function f
from a dataset DI .

ARX: A linear autoregression predicting the state as
a linear function of the state and control history for the
previous k time steps. That is

xt+1 = [xt, . . . xt−k+1, ut, . . . , ut−k+1]θ
with θ the model coefficients. Training is performed using
least-squares regression on the prediction error. The hyper-
parameter for ARX is the size of the history window k.

Koopman Operators learn a linear operator over an aug-
mented state x̄ = [x,φ1(x), . . . , φs(x)]T , where φ1, . . . , φs
are referred to as basis functions [8]. We use hyperparameters



TABLE I: For each SysID method, objective function, and optimization
method, we list the total number of hyperparameters, and the names of
hyperparameters. The possible number of active hyperparameters, which
varies depending on the choice of values, is listed in parentheses.

SysID #hyper. (act.) Hyperparameters

ARX 1 (1) history

Koopman 4 (3-4) usepolybasis,
polydegree,
usetrigbasis, trigfreq

SINDy 4 (2-4) usepolybasis,
polydegree,
usetrigbasis, trigfreq

GP 1 (1) inducingcount

MLP 7 (4-7) numhiddenlayers,
hiddensize{1,2,3,4},
learnrate, activation

Objective #hyper (act.) Hyperparameters

Simple
Quadratic

2n+m (2n+
m)

qdiagvals{1,..,n},
fdiagvals{1,..,n},
rdiagvals{1,..,m}

Gaussian Reg.
Term

2 (2) stateregweight,
controlregweight

Optimization #hyper. (act.) Hyperparameters

LQR 2 (1-2) ishorizonfinite,
horizon

Direct
Transcription

1 (1) horizon

iLQR 1 (1) horizon

MPPI 4 (4) horizon, numtrajs,
noisemagn, costscale

to select the basis functions, which can include polynomial
terms xs with 2 ≤ s ≤ 8 and trigonometric terms sin(ωx)
and cos(ωx) where 1 ≤ ω ≤ 8.

Sparse Identification of Nonlinear Systems (SINDy)
represents dynamics in the form

f(xt, ut) =
N

∑
i=1

aifi(xt, ut),

where f1, . . . , fN are nonlinear basis functions [7]. SINDy
uses a fixed set of candidate functions g1, . . . , gM and
performs sparse linear regression to identify a subset of N <
M basis functions for the dynamics. We use the pySINDy
library [10] in our implementation and use hyperparameters
to select the set of candidate functions in the same way that
we select basis functions for the Koopman operator.

Gaussian Processes (GPs) are a non-parametric model
that has been commonly used for MPC [24]. Standard GPs
use the full training set for inference, so they do not scale
well to larger data sets. Instead, we use an approximate
variational GP [17] implemented by the gPyTorch library
[16], which selects a learnable subset of training points to
use for inference. This subset is referred to as the inducing
set. The hyperparameter we use for GP is the size of the
inducing set.

Multi-layer Perceptrons (MLP) A feed-forward neural
network architecture. We use hyperparameters to control the

number of hidden layers in the network, the number of
neurons in each layer, the choice of activation function (from
ReLU, SeLU, tanh and sigmoid), and the learning rate during
training. The number of training iterations are currently fixed.

B. Objective Functions

The next tunable component is the optimizer’s objective
function L. AutoMPC allows users to specify custom ob-
jective functions with tunable hyperparameters. We provide
several pre-defined objectives which can be used as building
blocks to define an objective. First, we consider the simple
quadratic objective
LQ(xt∶t+H ,ut∶t+H−1;hL) = (xt+H − xtarg)TF (xt+H − xtarg)

+
t+H

∑
i=t

[(xi − xtarg)TQ(xi − xtarg) + uTi Rui],

with hyperparameters h1 . . . h2n+m dictating the matrices
Q = diag(h1, . . . , hn), F = diag(hn+1, . . . , h2n),
and R = diag(h2n+1, . . . , h2n+m).

This objective can be effective for simple tasks which drive
the system to a target state, such as the pendulum and cart-
pole swing-up tasks.

The objective function can also include a regularization
term to guide the optimization toward regions of the state
space where model accuracy is better. We implement an
option to penalize deviation from the data distribution of
D as modeled by a multivariate Gaussian with mean µx and
covariance matrix Σx. Similarly we model the controls in D
with mean µu and covariance Σu. We add a regularization
term to the objective:

LR(xt∶t+H ,ut∶t+H−1;hL) =
t+H

∑
i=t

h1(xi − µx)T Σ−1x (xi − µx)

+ h2(ui − µu)T Σ−1u (ui − µu)
with hyperparameters h1, h2.

C. Optimizers

We currently implement four optimizers. Each method has
a hyperparameter for the planning horizon.

Linear Quadratic Regulators (LQR) solve the optimal
control problem for tasks with linear models and quadratic
cost functions [23]. We introduce a categorical hyperparam-
eter to choose between finite and infinite horizon LQR.

Direct Transcription (DT) is a common method for for-
mulating trajectory optimization as a nonlinear programming
(NLP) problem [4]. DT requires the system model and the
cost function to be differentiable. Our implementation uses
IPOPT [33] to solve the NLP.

Iterative Linear Quadratic Regulator (iLQR) is a pop-
ular method for trajectory optimization similar to DT [32].
iLQR requires the system model to be differentiable and the
cost function to be twice-differentiable.

Model Predictive Path Integral (MPPI) is a sampling-
based optimizer that can be used with non-differentiable sys-
tem models, and has been demonstrated to work effectively
with neural networks [34]. We introduce hyperparameters



for the number of trajectories sampled on each iteration, the
magnitude of the noise, and the cost scaling factor.

Note that the choice of optimizer is constrained by the
choices of system model and objective function, and vice
versa. For example, if the model is linear and the objective
function is quadratic, then an LQR controller may be used,
but a nonlinear system model requires the use of a more
advanced optimizer. iLQR and Direct Transcription require
the system model to be differentiable, while MPPI can work
with non-differentiable models. At the moment, the model
and optimizer classes must be chosen manually, but in future
work we are exploring auto-tuning both.

V. RESULTS

We consider three robotics tasks: pendulum swing-up,
cart-pole swing-up, and half-cheetah running as implemented
in the HalfCheetah-v2 environment in OpenAI Gym [6].
Each training set consists of 1,000 trajectories generated by
applying, at each time step, controls chosen randomly from
a uniform distribution. Each trajectory lasts for 10 s and the
time step is 0.05 s. The train-test split is 50-50, and a MLP is
trained as the surrogate model. The pendulum and cart-pole
tasks are to move from the pole-down state to the pole-up
state xgoal, and use the following rollout performance metric

J(x1∶T ,u1∶T−1) =
T

∑
i=1

⎧⎪⎪⎨⎪⎪⎩

1 ∣ xi − xgoal ∣2> δ
0 otherwise

where δ = 0.1 for the pendulum and δ = 0.2 for the cart-pole.
For the half-cheetah, we use the same initial state and reward
R as defined in OpenAI gym, and set

J(x1∶T ,u1∶T−1) = 200 −R(x1∶T ,u1∶T−1).

A. Surrogate Function Tuning

The first experiment, shown in Fig. 2 evaluates the cor-
relation between the surrogate performance Ĵ and the true
performance J. Each point in the scatter plot corresponds
to a configuration h for a MLP-iLQR-Quad pipeline on the
cart-pole task. The surrogate value varies depending on the
random draw of DH , so the surrogate estimation procedure
was repeated 10 times for each configuration. The error
bars in Fig. 2 indicate the inter-quartile range. For some
configurations the inter-quartile range is 0. The correlation
between J and Ĵ is not perfect and some configurations have
considerably higher variance in Ĵ than others. However, the
relationship between J and Ĵ is still mostly monotonic. This
suggests that Ĵ is a useful metric for tuning.

B. System ID Tuning

Our next experiment compares the performance of each
system ID method on each sample system. The system ID
data set DI is split into a training set, validation set, and
testing set containing 70%, 15%, and 15% of the trajectories
respectively. Each method is tuned for 100 iterations (or until
the search space is exhausted) by SMAC based on the 1 s
rollout RMSE prediction error on the validation set.

Tab. II shows the 1 s error on the testing set for the tuned
models. Note that the performance of the methods considered
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Fig. 2: Comparing true performance J and the surrogate performance Ĵ.
Error bars indicate interquartile range over 10 random draws of the dataset.
Equality is indicated by the dotted line.

here varies significantly, both across methods for a given task
and across tasks for a given method. For example, SINDy
is the best performing scheme for the pendulum and cart-
pole tasks, but is significantly worse than all other methods
for the half-cheetah test. This is because the dynamics of
the pendulum and cart-pole systems can be represented as
a sum of the nonlinear basis functions implemented for
SINDy, while the dynamics of the half-cheetah are more
complicated. This variability in performance highlights that
methods are typically optimal only with respect to certain
systems, motivating the need for auto-tuning to avoid the
tedious process of searching among models.

C. Optimizer Tuning

Next, we compare the performance of each optimizer
on all three tasks. For each system, we test with a hand-
tuned system ID model (SINDy for pendulum and cart-
pole and MLP for half-cheetah). For the LQR optimizer, the
dynamics are linearized around the target state. The objective
and optimizer hyperparameters are tuned for 100 iterations
by SMAC based on the surrogate performance. Since the
outcome of the tuning process vary, we tune each setting
three times, randomizing the dataset, model weights, and
SMAC seed. Tab. III reports the best tuning outcome for
each task and optimizer. We also report the results of the
iLQR optimizer with the Gaussian regularization objective.
For the pendulum task, we observe that all methods perform
comparably, though iLQR is slightly worse. For the cart-
pole, we observe that all methods perform identically except
for LQR which fails to complete the task. For the half-
cheetah, iLQR achieves the best performance, while MPPI
also performs decently. We note that as with system ID, the
best optimizer varies from system to system.

D. End-to-end Tuning

Next, we evaluate the end-to-end system performance of
several tuning approaches, and compare with a hand-tuned
baseline. We use the example of MLP-iLQR-Quad on the
cart-pole, and tune using the following approaches: 1) We
tune the system ID for accuracy in the same manner as in
Sec. V-B, while the objective and optimizer are fixed to
the hand-tuned baseline; 2) We tune the system ID model
based on the surrogate performance, keeping objective and



TABLE II: Performance of SysID methods for three systems. Each
combination is tuned and evaluated based on the RMSE at a 1 s time horizon.

Sys. ID Pendulum Cart-pole Half-cheetah
ARX 1.97 1.77 5.39

Koopman 2.37 1.94 5.35
SINDy 0.03 0.00 5,115,567

GP 0.36 1.13 2.45
MLP 0.10 0.15 1.57

TABLE III: Performance of optimizers for three systems. For each system,
we fix a hand-tuned SysID, and tune the optimizer and objective function
hyperparameters by an MLP surrogate. for each combination, we show the
best result out of three tunes. Lower values indicate better performance.

Optimizer Pendulum Cart-pole Half-cheetah
LQR 31.0 201.0 261.5
iLQR 35.0 21.0 -29.5

iLQR w/ Gauss. Reg. 31.0 21.0 134.1
Direct Transcription 30.0 21.0 221.8

MPPI 31.0 21.0 52.2

optimizer fixed; 3) Using a system ID pre-tuned on data
(i.e. the result of tuning under the first mode), we tune the
optimizer and objective hyperparameters; 4) We perform full
pipeline tuning of all hyperparameters simultaneously.

Fig. 3 compares the results against the hand-tuned baseline
over 100 tuning iterations. We run each tuning method five
times and plot the median scores. Except for tuning system
ID for accuracy, all methods perform comparably and are
able to exceed the baseline.

E. Comparison to Offline RL

Next, we compare the true performance of full pipeline
tuning compared to the offline RL algorithm Batch-
constrained Deep Q Learning (BCQ) [15]. We train BCQ
for one million iterations with the same dataset size and
distribution as used in prior sections. To limit the hyper-
parameter space for the half-cheetah, we use a custom
quadratic objective which only tunes the weights for the
vertical position, horizontal velocity, and front thigh, shin,
and foot angles. The custom objective also allows the target
velocity to be tuned. For each system, we repeat the tuning
procedure ten times, randomizing the dataset, model weights,
and SMAC seed. For the half-cheetah system, we observe
that the surrogate model evaluation occasionally produces
highly implausible estimates, and so we modify the tun-
ing procedure to reject performance estimates which fall
outside of a predefined plausible range. Results in Fig. 4
demonstrate that in the median case, our method achieves
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Fig. 3: Comparing auto-tuning procedures. The y-axis plots true perfor-
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Fig. 4: Tuning curves for three robotics tasks compared the offline RL
algorithm BCQ. For each system, we run ten tuning trials, plotted in
grey. The median and best performances for each system are highlighted.
Performance is evaluated with respect to ground truth dynamics.

superior performance to BCQ on each task. We remark that
BCQ was originally presented as learning on data produced
from a moderately good controller. In these experiments,
we consider the much more challenging task of learning
on data generated by a completely uninformed (random)
controller. Even with uninformed initial data, AutoMPC
achieves reasonable performance in almost all cases. In the
more challenging half-cheetah system, the controllers pro-
duced by AutoMPC exhibit larger variations in performance,
but at least some perform well. For such problems, we
suggest to run the tuning process multiple times on the same
dataset to obtain different controllers, then acquire a new
dataset on the physical system using those controllers, and
finally re-run tuning on the new dataset.

F. Analysis of Selected Hyperparameters

We observe a few interesting trends in the hyperparameters
selected by AutoMPC. First, AutoMPC rarely selects ReLU
activations for MLP system ID models. Instead, it more often
selects tanh or SeLU activations. This may suggest that the
discontinuities of ReLU cause problems for optimizations.
Additionally, AutoMPC typically selects at least two MLP
layers at least one of which has more than 150 neurons. Sec-
ond, we observe that AutoMPC typically selects longer pre-
diction horizons for the half-cheetah system, but prediction
horizon appears to be less relevant for the simpler systems.
Finally, for the pendulum and cart-pole systems, AutoMPC
typically places a large objective weight on pendulum angle
compared to other state dimensions.

VI. CONCLUSION & DISCUSSION

In this work, we introduce a pipeline for tuning data-
driven MPC controllers and present the associated software
package AutoMPC. Contrary to existing methods that focus
on certain stages of data-driven control, our approach jointly
optimizes the hyperparameters of system identification, task
specification, and control synthesis of several available
schemes. Our framework is extensible, allowing users to
add their own models, optimizers, or objective functions.
We experimentally demonstrate that AutoMPC can produce
good controllers even when learning on data produced by
a totally uninformed method. In future work, we plan to
extend AutoMPC to perform automatic model and optimizer
selection in addition to hyperparameter tuning. We are also
interested in exploring methods such as meta-learning to
further improve speed and reliability.



REFERENCES

[1] I. Abraham, G. De La Torre, and T. D. Murphey, “Model-based control
using Koopman operators,” in Robotics: Science and Systems (RSS),
2017.

[2] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomiin, “Goal-
driven dynamics learning via Bayesian optimization,” in Conference
on Decision and Control (CDC), 2017, pp. 5168–5173.

[3] A. Bemporad and M. Morari, “Robust model predictive control: A
survey,” in Robustness in identification and control. Springer, 1999,
pp. 207–226.

[4] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–
207, 1998.

[5] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge University Press, 2017.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI gym,” Arxiv preprint
arXiv:1606.01540, 2016.

[7] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” National Academy of Sciences, vol. 113, no. 15, pp. 3932–
3937, 2016.

[8] M. Budišić, R. Mohr, and I. Mezić, “Applied Koopmanism,” Chaos:
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