klampt.robotsim (core classes) module¶
The robotsim module contains all of the core classes and functions from the C++ API. These are imported into the main klampt
namespace.
Note: The C++ API is converted from SWIG, so the documentation may be a little rough. The first lines of the documentation for overloaded SWIG functions may describe the signature for each function overload. For example, klampt.WorldModel.add()
contains the listing:
add (name,robot): RobotModel
add (name,obj): RigidObjectModel
add (name,terrain): TerrainModel
Parameters: * name (str) –
* robot (RobotModel, optional) –
* obj (RigidObjectModel, optional) –
* terrain (TerrainModel, optional) –
The colon followed by a type descriptor, : Type
, gives the type of the return value. This means that if the second argument is a RobotModel, the first overload is matched, and the return value is a klampt.RobotModel
.
Modeling robots and worlds¶
Imported into the main klampt
package.
|
The main world class, containing robots, rigid objects, and static environment geometry. |
A model of a dynamic and kinematic robot. |
|
A reference to a link of a RobotModel. |
|
|
A reference to a driver of a RobotModel. |
A rigid movable object. |
|
Static environment geometry. |
|
|
Stores mass information for a rigid body or robot link. |
Stores contact parameters for an entity. |
|
|
Sets the random seed used by the motion planner. |
|
destroys internal data structures |
Modeling geometries¶
Imported into the main klampt
package.
|
The three-D geometry container used throughout Klampt. |
|
Geometry appearance information. |
A geometric primitive. |
|
A 3D indexed triangle mesh class. |
|
A 3D point cloud class. |
|
An axis-aligned volumetric grid, typically a signed distance transform with > 0 indicating outside and < 0 indicating inside. |
|
Stores a set of points to be set into a ConvexHull type. |
|
Configures the _ext distance queries of |
|
The result from a “fancy” distance query of |
|
The result from a contact query of |
Inverse kinematics¶
Imported into the main klampt
package.
|
A class defining an inverse kinematic target. |
|
An inverse kinematics solver based on the Newton-Raphson technique. |
|
An inverse kinematics target for matching points between two robots and/or objects. |
|
An inverse kinematics solver between multiple robots and/or objects. |
Simulation¶
Imported into the main klampt
package.
|
A dynamics simulator for a WorldModel. |
|
A reference to a rigid body inside a Simulator (either a RigidObjectModel, TerrainModel, or a link of a RobotModel). |
|
An interface to ODE’s hinge and slider joints. |
A controller for a simulated robot. |
|
|
A sensor on a simulated robot. |
Equilibrium testing¶
See also the aliases in the klampt.model.contact module.
|
Tests whether the given COM com is stable for the given contacts and the given external force fext. |
|
Tests whether the given COM com is stable for the given contacts and the given external force fext. |
|
Solves for the torques / forces that keep the robot balanced against gravity. |
|
Returns true if the list of contact points has force closure. |
|
Returns true if the list of 2D contact points has force closure. |
|
Globally sets the number of edges used in the friction cone approximation. |
|
Calculates the support polygon for a given set of contacts and a downward external force (0,0,-g). |
|
Calculates the support polygon (interval) for a given set of contacts and a downward external force (0,-g). |
Input/Output¶
Imported into the klampt.io
package
|
Subscribes a Geometry3D to a stream. |
|
Unsubscribes from a stream previously subscribed to via |
|
Does some processing on stream subscriptions. |
|
Waits up to timeout seconds for an update on the given stream. |
|
Exports the WorldModel to a JSON string ready for use in Three.js. |
|
Exports the WorldModel to a JSON string ready for use in Three.js. |
Visualization¶
For use in GLWidgetPlugin
.
|
|
|
|
|
|
|
Module contents¶
Classes:
|
The main world class, containing robots, rigid objects, and static environment geometry. |
A model of a dynamic and kinematic robot. |
|
A reference to a link of a RobotModel. |
|
A rigid movable object. |
|
Static environment geometry. |
|
|
Stores mass information for a rigid body or robot link. |
Stores contact parameters for an entity. |
|
A controller for a simulated robot. |
|
|
A sensor on a simulated robot. |
|
A reference to a rigid body inside a Simulator (either a RigidObjectModel, TerrainModel, or a link of a RobotModel). |
|
An interface to ODE’s hinge and slider joints. |
|
A dynamics simulator for a WorldModel. |
|
The three-D geometry container used throughout Klampt. |
|
Geometry appearance information. |
Configures the _ext distance queries of |
|
The result from a “fancy” distance query of |
|
The result from a contact query of |
|
A 3D indexed triangle mesh class. |
|
A 3D point cloud class. |
|
A geometric primitive. |
|
Stores a set of points to be set into a ConvexHull type. |
|
An axis-aligned volumetric grid, typically a signed distance transform with > 0 indicating outside and < 0 indicating inside. |
|
|
A class defining an inverse kinematic target. |
|
An inverse kinematics solver based on the Newton-Raphson technique. |
|
An inverse kinematics target for matching points between two robots and/or objects. |
|
An inverse kinematics solver between multiple robots and/or objects. |
|
|
|
|
|
alias of |
|
alias of |
|
|
|
alias of |
|
|
|
alias of |
|
|
|
alias of |
|
A reference to a driver of a RobotModel. |
|
|
|
alias of |
|
|
|
|
|
|
|
|
|
Tuple type; Tuple[X, Y] is the cross-product type of X and Y. |
|
alias of |
|
alias of |
|
|
|
|
|
|
|
Functions:
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Deprecated. |
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Tests whether the given COM com is stable for the given contacts and the given external force fext. |
|
Tests whether the given COM com is stable for the given contacts and the given external force fext. |
|
destroys internal data structures |
|
Unsubscribes from a stream previously subscribed to via |
|
|
|
Deprecated in a future version of Klampt. |
|
Solves for the torques / forces that keep the robot balanced against gravity. |
|
|
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Returns true if the list of contact points has force closure. |
|
Returns true if the list of 2D contact points has force closure. |
|
|
|
Does some processing on stream subscriptions. |
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Globally sets the number of edges used in the friction cone approximation. |
|
Sets the random seed used by the motion planner. |
|
Subscribes a Geometry3D to a stream. |
|
Deprecated in a future version of Klampt. |
|
Deprecated in a future version of Klampt. |
|
Calculates the support polygon for a given set of contacts and a downward external force (0,0,-g). |
|
Calculates the support polygon (interval) for a given set of contacts and a downward external force (0,-g). |
|
Exports the WorldModel to a JSON string ready for use in Three.js. |
|
Exports the WorldModel to a JSON string ready for use in Three.js. |
|
Waits up to timeout seconds for an update on the given stream. |
-
class
klampt.
WorldModel
(*args)[source]¶ Bases:
object
The main world class, containing robots, rigid objects, and static environment geometry.
Every robot/robot link/terrain/rigid object is given a unique ID in the world. This is potentially a source of confusion because some functions take IDs and some take indices. Only the WorldModel and Simulator classes use IDs when the argument has ‘id’ as a suffix, e.g., geometry(), appearance(), Simulator.inContact(). All other functions use indices, e.g. robot(0), terrain(0), etc.
To get an object’s ID, you can see the value returned by loadElement and/or object.getID(). states.
To save/restore the state of the model, you must manually maintain copies of the states of whichever objects you wish to save/restore.
C++ includes: robotmodel.h
Creates a WorldModel.
__init__ ():
WorldModel
__init__ (ptrRobotWorld):
WorldModel
__init__ (w):
WorldModel
__init__ (fn):
WorldModel
- Parameters
ptrRobotWorld (
void *
, optional) –w (
WorldModel
, optional) –fn (str, optional) –
Given no arguments, creates a new world.
Given another WorldModel instance, creates a reference to an existing world. (To create a copy, use the copy() method.)
Given a string, loads from a file. A PyException is raised on failure.
Given a pointer to a C++ RobotWorld structure, a reference to that structure is returned. (This is advanced usage, seen only when interfacing C++ and Python code)
Attributes:
The membership flag
index : int
Methods:
copy
()Creates a copy of the world model.
readFile
(fn)Reads from a world XML file.
loadFile
(fn)Alias of readFile.
saveFile
(fn[, elementDir])Saves to a world XML file.
Returns the number of robots.
numRobotLinks
(robot)Returns the number of links on the given robot.
Returns the number of rigid objects.
Returns the number of terrains.
numIDs
()Returns the total number of world ids.
robot
(*args)Returns a RobotModel in the world by index or name.
robotLink
(*args)Returns a RobotModelLink of some RobotModel in the world by index or name.
rigidObject
(*args)Returns a RigidObjectModel in the world by index or name.
terrain
(*args)Returns a TerrainModel in the world by index or name.
makeRobot
(name)Creates a new empty robot.
makeRigidObject
(name)Creates a new empty rigid object.
makeTerrain
(name)Creates a new empty terrain.
loadRobot
(fn)Loads a robot from a .rob or .urdf file.
loadRigidObject
(fn)Loads a rigid object from a .obj or a mesh file.
loadTerrain
(fn)Loads a rigid object from a mesh file.
loadElement
(fn)Loads some element from a file, automatically detecting its type.
add
(*args)Adds a copy of the given robot, rigid object, or terrain to this world, either from this WorldModel or another.
remove
(*args)Removes a robot, rigid object, or terrain from the world.
getName
(id)Retrieves the name for a given element ID.
geometry
(id)Retrieves a geometry for a given element ID.
appearance
(id)Retrieves an appearance for a given element ID.
drawGL
()Draws the entire world using OpenGL.
enableGeometryLoading
(enabled)If geometry loading is set to false, then only the kinematics are loaded from disk, and no geometry / visualization / collision detection structures will be loaded.
enableInitCollisions
(enabled)If collision detection is set to true, then collision acceleration data structures will be automatically initialized, with debugging information.
-
property
thisown
¶ The membership flag
-
copy
()[source]¶ Creates a copy of the world model. Note that geometries and appearances are shared, so this is very quick.
- Return type
WorldModel
-
readFile
(fn)[source]¶ Reads from a world XML file.
- Parameters
fn (str) –
- Returns
True if successful, False if failed.
- Return type
bool
-
saveFile
(fn, elementDir=None)[source]¶ Saves to a world XML file. If elementDir is provided, then robots, terrains, etc. will be saved there. Otherwise they will be saved to a folder with the same base name as fn (without the trailing .xml)
- Parameters
fn (str) –
elementDir (str, optional) – default value None
- Return type
bool
-
numRobotLinks
(robot)[source]¶ Returns the number of links on the given robot.
- Parameters
robot (int) –
- Return type
int
-
robot
(*args)[source]¶ Returns a RobotModel in the world by index or name.
robot (index):
RobotModel
robot (name):
RobotModel
- Parameters
index (int, optional) –
name (str, optional) –
- Returns
- Return type
- Return type
RobotModel
-
robotLink
(*args)[source]¶ Returns a RobotModelLink of some RobotModel in the world by index or name.
robotLink (robot,index):
RobotModelLink
robotLink (robot,name):
RobotModelLink
- Parameters
robot (str or int) –
index (int, optional) –
name (str, optional) –
- Returns
- Return type
- Return type
RobotModelLink
-
rigidObject
(*args)[source]¶ Returns a RigidObjectModel in the world by index or name.
rigidObject (index):
RigidObjectModel
rigidObject (name):
RigidObjectModel
- Parameters
index (int, optional) –
name (str, optional) –
- Returns
- Return type
- Return type
RigidObjectModel
-
terrain
(*args)[source]¶ Returns a TerrainModel in the world by index or name.
terrain (index):
TerrainModel
terrain (name):
TerrainModel
- Parameters
index (int, optional) –
name (str, optional) –
- Returns
- Return type
- Return type
TerrainModel
-
makeRobot
(name)[source]¶ Creates a new empty robot. (Not terribly useful now since you can’t resize the number of links yet)
- Parameters
name (str) –
- Return type
RobotModel
-
makeRigidObject
(name)[source]¶ Creates a new empty rigid object.
- Parameters
name (str) –
- Return type
RigidObjectModel
-
makeTerrain
(name)[source]¶ Creates a new empty terrain.
- Parameters
name (str) –
- Return type
TerrainModel
-
loadRobot
(fn)[source]¶ Loads a robot from a .rob or .urdf file. An empty robot is returned if loading fails.
- Parameters
fn (str) –
- Return type
RobotModel
-
loadRigidObject
(fn)[source]¶ Loads a rigid object from a .obj or a mesh file. An empty rigid object is returned if loading fails.
- Parameters
fn (str) –
- Return type
RigidObjectModel
-
loadTerrain
(fn)[source]¶ Loads a rigid object from a mesh file. An empty terrain is returned if loading fails.
- Parameters
fn (str) –
- Return type
TerrainModel
-
loadElement
(fn)[source]¶ Loads some element from a file, automatically detecting its type. Meshes are interpreted as terrains.
- Parameters
fn (str) –
- Returns
The element’s ID, or -1 if loading failed.
- Return type
int
-
add
(*args)[source]¶ Adds a copy of the given robot, rigid object, or terrain to this world, either from this WorldModel or another.
add (name,robot):
RobotModel
add (name,obj):
RigidObjectModel
add (name,terrain):
TerrainModel
- Parameters
name (str) –
robot (
RobotModel
, optional) –obj (
RigidObjectModel
, optional) –terrain (
TerrainModel
, optional) –
- Returns
- Return type
(
RobotModel
orTerrainModel
orRigidObjectModel
)- Return type
TerrainModel
-
remove
(*args)[source]¶ Removes a robot, rigid object, or terrain from the world. It must be in this world or an exception is raised.
remove (robot)
remove (object)
remove (terrain)
- Parameters
robot (
RobotModel
, optional) –object (
RigidObjectModel
, optional) –terrain (
TerrainModel
, optional) –
Important
All other RobotModel, RigidObjectModel, or TerrainModel references will be invalidated.
- Return type
None
-
getName
(id)[source]¶ Retrieves the name for a given element ID.
- Parameters
id (int) –
- Return type
str
-
geometry
(id)[source]¶ Retrieves a geometry for a given element ID.
- Parameters
id (int) –
- Return type
Geometry3D
-
appearance
(id)[source]¶ Retrieves an appearance for a given element ID.
- Parameters
id (int) –
- Return type
Appearance
-
enableGeometryLoading
(enabled)[source]¶ If geometry loading is set to false, then only the kinematics are loaded from disk, and no geometry / visualization / collision detection structures will be loaded. Useful for quick scripts that just use kinematics / dynamics of a robot.
- Parameters
enabled (bool) –
- Return type
None
-
enableInitCollisions
(enabled)[source]¶ If collision detection is set to true, then collision acceleration data structures will be automatically initialized, with debugging information. Useful for scripts that do planning and for which collision initialization may take a long time.
- Parameters
enabled (bool) –
Note that even when this flag is off, the collision acceleration data structures will indeed be initialized the first time that geometry collision, distance, or ray-casting routines are called.
- Return type
None
-
property
index
¶ index : int
-
class
klampt.
RobotModel
[source]¶ Bases:
object
A model of a dynamic and kinematic robot.
Stores both constant information, like the reference placement of the links, joint limits, velocity limits, etc, as well as a current configuration and current velocity which are state-dependent. Several functions depend on the robot’s current configuration and/or velocity. To update that, use the setConfig() and setVelocity() functions. setConfig() also update’s the robot’s link transforms via forward kinematics. You may also use setDOFPosition and setDOFVelocity for individual changes, but these are more expensive because each call updates all of the affected the link transforms.
It is important to understand that changing the configuration of the model doesn’t actually send a command to the physical / simulated robot. Moreover, the model does not automatically get updated when the physical / simulated robot moves. In essence, the model maintains temporary storage for performing kinematics, dynamics, and planning computations, as well as for visualization.
The state of the robot is retrieved using getConfig/getVelocity calls, and is set using setConfig/setVelocity. Because many routines change the robot’s configuration, like IK and motion planning, a common design pattern is to save/restore the configuration as follows:
q = robot.getConfig() do some stuff that may touch the robot's configuration... robot.setConfig(q)
The model maintains configuration/velocity/acceleration/torque limits. However, these are not enforced by the model, so you can happily set configurations outside the limits. Valid commands must rather be enforced by the planner / controller / simulator.
As elsewhere in Klampt, the mapping between links and drivers is not one-to one. A driver is essentially an actuator and transmission, and for most links a link is driven by a unique driver (e.g., a motor and gearbox). However, there do exist certain cases in which a link is not driven at all (e.g., the 6 virtual links of a floating-base robot), or multiple links are driven by a single actuator (e.g., a parallel-bar mechanism or a compliant hand). There are also unusual drivers that introduce underactuated dynamics into the system, such as a differential drive or Dubin’s car mobile base. Care must be taken when sending commands to motor controllers (e.g., Klampt Robot Interface Layer), which often work in the actuator space rather than joint space. (See
configToDrivers()
,configFromDrivers()
,velocityToDrivers()
,velocityFromDrivers()
).C++ includes: robotmodel.h
Attributes:
The membership flag
world : int
index : int
robot : p.Klampt::RobotModel
dirty_dynamics : bool
- rtype
str
Returns the ID of the robot in its world.
Retrieves the current configuration of the robot model.
Retreives the current velocity of the robot model.
Methods:
loadFile
(fn)Loads the robot from the file fn.
saveFile
(fn[, geometryPrefix])Saves the robot to the file fn.
getID
()Returns the ID of the robot in its world.
getName
()- rtype
str
setName
(name)Sets the name of the robot.
numLinks
()Returns the number of links = number of DOF’s.
link
(*args)Returns a reference to the link by index or name.
Returns the number of drivers.
driver
(*args)Returns a reference to the driver by index or name.
getJointType
(*args)Returns the joint type of the joint connecting the link to its parent, where the link is identified by index or by name.
Retrieves the current configuration of the robot model.
Retreives the current velocity of the robot model.
setConfig
(q)Sets the current configuration of the robot.
setVelocity
(dq)Sets the current velocity of the robot model.
Returns a pair (qmin,qmax) of min/max joint limit vectors.
setJointLimits
(qmin, qmax)Sets the min/max joint limit vectors (must have length numLinks())
Returns the velocity limit vector vmax, the constraint is \(|dq[i]| \leq vmax[i]\)
setVelocityLimits
(vmax)Sets the velocity limit vector vmax, the constraint is \(|dq[i]| \leq vmax[i]\)
Returns the acceleration limit vector amax, the constraint is \(|ddq[i]| \leq amax[i]\)
setAccelerationLimits
(amax)Sets the acceleration limit vector amax, the constraint is \(|ddq[i]| \leq amax[i]\)
Returns the torque limit vector tmax, the constraint is \(|torque[i]| \leq tmax[i]\)
setTorqueLimits
(tmax)Sets the torque limit vector tmax, the constraint is \(|torque[i]| \leq tmax[i]\)
setDOFPosition
(*args)Sets a single DOF’s position (by index or by name).
getDOFPosition
(*args)Returns a single DOF’s position (by name)
getCom
()Returns the 3D center of mass at the current config.
Returns the 3D velocity of the center of mass at the current config / velocity.
Computes the Jacobian matrix of the current center of mass.
Computes the 3D linear momentum vector.
Computes the 3D angular momentum vector.
Computes the kinetic energy at the current config / velocity.
Computes the 3x3 total inertia matrix of the robot.
Computes the nxn mass matrix B(q).
Computes the inverse of the nxn mass matrix B(q)^-1.
Computes the derivative of the nxn mass matrix with respect to q_i.
Computes the derivative of the nxn mass matrix with respect to t, given the robot’s current velocity.
Computes the Coriolis force matrix C(q,dq) for current config and velocity.
Computes the Coriolis forces C(q,dq)*dq for current config and velocity.
Computes the generalized gravity vector G(q) for the given workspace gravity vector g (usually (0,0,-9.8)).
torquesFromAccel
(ddq)Computes the inverse dynamics.
Computes the foward dynamics.
interpolate
(a, b, u)Interpolates smoothly between two configurations, properly taking into account nonstandard joints.
distance
(a, b)Computes a distance between two configurations, properly taking into account nonstandard joints.
interpolateDeriv
(a, b)Returns the configuration derivative at a as you interpolate toward b at unit speed.
randomizeConfig
([unboundedScale])Samples a random configuration and updates the robot’s pose.
configToDrivers
(config)Converts a full configuration (length numLinks()) to a list of driver values (length numDrivers()).
velocityToDrivers
(velocities)Converts a full velocity vector (length numLinks()) to a list of driver velocities (length numDrivers()).
configFromDrivers
(driverValues)Converts a list of driver values (length numDrivers()) to a full configuration (length numLinks()).
velocityFromDrivers
(driverVelocities)Converts a list of driver velocities (length numDrivers()) to a full velocity vector (length numLinks()).
selfCollisionEnabled
(link1, link2)Queries whether self collisions between two links is enabled.
enableSelfCollision
(link1, link2, value)Enables/disables self collisions between two links (depending on value)
Returns true if the robot is in self collision (faster than manual testing)
drawGL
([keepAppearance])Draws the robot geometry.
reduce
(robot)Sets self to a reduced version of robot, where all fixed DOFs are eliminated.
mount
(link, subRobot, R, t)Mounts a sub-robot onto a link, with its origin at a given local transform (R,t).
sensor
(*args)Returns a sensor by index or by name.
addSensor
(name, type)Adds a new sensor with a given name and type.
-
property
thisown
¶ The membership flag
-
loadFile
(fn)[source]¶ Loads the robot from the file fn.
- Parameters
fn (str) –
- Returns
True if successful, False if failed.
- Return type
bool
-
saveFile
(fn, geometryPrefix=None)[source]¶ Saves the robot to the file fn.
- Parameters
fn (str) –
geometryPrefix (str, optional) – default value None
If geometryPrefix == None (default), the geometry is not saved. Otherwise, the geometry of each link will be saved to files named geometryPrefix+name, where name is either the name of the geometry file that was loaded, or [link_name].off
- Return type
bool
-
getID
()[source]¶ Returns the ID of the robot in its world.
Note
The world ID is not the same as the robot index.
- Return type
int
-
link
(*args)[source]¶ Returns a reference to the link by index or name.
link (index):
RobotModelLink
link (name):
RobotModelLink
- Parameters
index (int, optional) –
name (str, optional) –
- Returns
- Return type
- Return type
RobotModelLink
-
driver
(*args)[source]¶ Returns a reference to the driver by index or name.
driver (index):
RobotModelDriver
driver (name):
RobotModelDriver
- Parameters
index (int, optional) –
name (str, optional) –
- Returns
- Return type
RobotModelDriver
- Return type
RobotModelDriver
-
getJointType
(*args)[source]¶ Returns the joint type of the joint connecting the link to its parent, where the link is identified by index or by name.
getJointType (index): str
getJointType (name): str
- Parameters
index (int, optional) –
name (str, optional) –
- Returns
- Return type
str
- Return type
str
-
setConfig
(q)[source]¶ Sets the current configuration of the robot. Input q is a vector of length numLinks(). This also updates forward kinematics of all links.
- Parameters
q (
list of floats
) –
Again, it is important to realize that the RobotModel is not the same as a simulated robot, and this will not change the simulation world. Many functions such as IK and motion planning use the RobotModel configuration as a temporary variable, so if you need to keep the configuration through a robot-modifying function call, you should call q = robot.getConfig() before the call, and then robot.setConfig(q) after it.
- Return type
None
-
setVelocity
(dq)[source]¶ Sets the current velocity of the robot model. Like the configuration, this is also essentially a temporary variable.
- Parameters
dq (
list of floats
) –- Return type
None
-
getJointLimits
()[source]¶ Returns a pair (qmin,qmax) of min/max joint limit vectors.
- Return type
None
-
setJointLimits
(qmin, qmax)[source]¶ Sets the min/max joint limit vectors (must have length numLinks())
- Parameters
qmin (
list of floats
) –qmax (
list of floats
) –
- Return type
None
-
getVelocityLimits
()[source]¶ Returns the velocity limit vector vmax, the constraint is \(|dq[i]| \leq vmax[i]\)
- Return type
None
-
setVelocityLimits
(vmax)[source]¶ Sets the velocity limit vector vmax, the constraint is \(|dq[i]| \leq vmax[i]\)
- Parameters
vmax (
list of floats
) –- Return type
None
-
getAccelerationLimits
()[source]¶ Returns the acceleration limit vector amax, the constraint is \(|ddq[i]| \leq amax[i]\)
- Return type
None
-
setAccelerationLimits
(amax)[source]¶ Sets the acceleration limit vector amax, the constraint is \(|ddq[i]| \leq amax[i]\)
- Parameters
amax (
list of floats
) –- Return type
None
-
getTorqueLimits
()[source]¶ Returns the torque limit vector tmax, the constraint is \(|torque[i]| \leq tmax[i]\)
- Return type
None
-
setTorqueLimits
(tmax)[source]¶ Sets the torque limit vector tmax, the constraint is \(|torque[i]| \leq tmax[i]\)
- Parameters
tmax (
list of floats
) –- Return type
None
-
setDOFPosition
(*args)[source]¶ Sets a single DOF’s position (by index or by name).
setDOFPosition (i,qi)
setDOFPosition (name,qi)
- Parameters
i (int, optional) –
qi (float) –
name (str, optional) –
Note
If you are setting several joints at once, use setConfig because this function computes forward kinematics for all descendant links each time it is called.
- Return type
None
-
getDOFPosition
(*args)[source]¶ Returns a single DOF’s position (by name)
getDOFPosition (i): float
getDOFPosition (name): float
- Parameters
i (int, optional) –
name (str, optional) –
- Returns
- Return type
float
- Return type
float
-
getComVelocity
()[source]¶ Returns the 3D velocity of the center of mass at the current config / velocity.
- Return type
None
-
getComJacobian
()[source]¶ Computes the Jacobian matrix of the current center of mass.
- Returns
a 3xn matrix J such that np.dot(J,dq) gives the COM velocity at the currene configuration
- Return type
ndarray
- Return type
None
-
getKineticEnergy
()[source]¶ Computes the kinetic energy at the current config / velocity.
- Return type
float
-
getMassMatrixInv
()[source]¶ Computes the inverse of the nxn mass matrix B(q)^-1.
Takes O(n^2) time, which is much faster than inverting the result of getMassMatrix
- Return type
None
-
getMassMatrixDeriv
(i)[source]¶ Computes the derivative of the nxn mass matrix with respect to q_i.
- Parameters
i (int) –
Takes O(n^3) time.
- Return type
None
-
getMassMatrixTimeDeriv
()[source]¶ Computes the derivative of the nxn mass matrix with respect to t, given the robot’s current velocity.
Takes O(n^4) time.
- Return type
None
-
getCoriolisForceMatrix
()[source]¶ Computes the Coriolis force matrix C(q,dq) for current config and velocity.
Takes O(n^2) time.
- Return type
None
-
getCoriolisForces
()[source]¶ Computes the Coriolis forces C(q,dq)*dq for current config and velocity.
Takes O(n) time, which is faster than computing matrix and doing the product.
(“Forces” is somewhat of a misnomer; the result is a joint torque vector)
- Return type
None
-
getGravityForces
(g)[source]¶ Computes the generalized gravity vector G(q) for the given workspace gravity vector g (usually (0,0,-9.8)).
- Parameters
g (
list of 3 floats
) –
Note
“Forces” is somewhat of a misnomer; the result is a vector of joint torques.
- Returns
the n-element generalized gravity vector at the robot’s current configuration.
- Return type
list of floats
- Return type
None
-
torquesFromAccel
(ddq)[source]¶ Computes the inverse dynamics. Uses Recursive Newton Euler solver and takes O(n) time.
- Parameters
ddq (
list of floats
) –
Specifically, solves for \(\tau\) in the (partial) dynamics equation:
\[`B(q) \ddot{q} + C(q,@dot {q}) = \tau`\]Note
Does not include gravity term G(q). getGravityForces(g) will need to be added to the result.
- Returns
the n-element torque vector that would produce the joint accelerations ddq in the absence of external forces.
- Return type
list of floats
- Return type
None
-
accelFromTorques
(t)[source]¶ Computes the foward dynamics. Uses Recursive Newton Euler solver and takes O(n) time.
- Parameters
t (
list of floats
) –
Specifically, solves for \(\ddot{q}\) in the (partial) dynamics equation:
\[`B(q) \ddot{q} + C(q,@dot {q}) = \tau`\]Note
Does not include gravity term G(q). getGravityForces(g) will need to be subtracted from the argument t.
- Returns
the n-element joint acceleration vector that would result from joint torques t in the absence of external forces.
- Return type
list of floats
- Return type
None
-
interpolate
(a, b, u)[source]¶ Interpolates smoothly between two configurations, properly taking into account nonstandard joints.
- Parameters
a (
list of floats
) –b (
list of floats
) –u (float) –
- Returns
The n-element configuration that is u fraction of the way from a to b.
- Return type
None
-
distance
(a, b)[source]¶ Computes a distance between two configurations, properly taking into account nonstandard joints.
- Parameters
a (
list of floats
) –b (
list of floats
) –
- Return type
float
-
interpolateDeriv
(a, b)[source]¶ Returns the configuration derivative at a as you interpolate toward b at unit speed.
- Parameters
a (
list of floats
) –b (
list of floats
) –
- Return type
None
-
randomizeConfig
(unboundedScale=1.0)[source]¶ Samples a random configuration and updates the robot’s pose. Properly handles non-normal joints and handles DOFs with infinite bounds using a centered Laplacian distribution with the given scaling term.
- Parameters
unboundedScale (float, optional) – default value 1.0
Note
Python random module seeding does not affect the result.
- Return type
None
-
configToDrivers
(config)[source]¶ Converts a full configuration (length numLinks()) to a list of driver values (length numDrivers()).
- Parameters
config (
list of floats
) –- Return type
None
-
velocityToDrivers
(velocities)[source]¶ Converts a full velocity vector (length numLinks()) to a list of driver velocities (length numDrivers()).
- Parameters
velocities (
list of floats
) –- Return type
None
-
configFromDrivers
(driverValues)[source]¶ Converts a list of driver values (length numDrivers()) to a full configuration (length numLinks()).
- Parameters
driverValues (
list of floats
) –- Return type
None
-
velocityFromDrivers
(driverVelocities)[source]¶ Converts a list of driver velocities (length numDrivers()) to a full velocity vector (length numLinks()).
- Parameters
driverVelocities (
list of floats
) –- Return type
None
-
selfCollisionEnabled
(link1, link2)[source]¶ Queries whether self collisions between two links is enabled.
- Parameters
link1 (int) –
link2 (int) –
- Return type
bool
-
enableSelfCollision
(link1, link2, value)[source]¶ Enables/disables self collisions between two links (depending on value)
- Parameters
link1 (int) –
link2 (int) –
value (bool) –
- Return type
None
-
selfCollides
()[source]¶ Returns true if the robot is in self collision (faster than manual testing)
- Return type
bool
-
drawGL
(keepAppearance=True)[source]¶ Draws the robot geometry. If keepAppearance=true, the current appearance is honored. Otherwise, only the raw geometry is drawn.
- Parameters
keepAppearance (bool, optional) – default value True
PERFORMANCE WARNING: if keepAppearance is false, then this does not properly reuse OpenGL display lists. A better approach to changing the robot’s appearances is to set the link Appearance’s directly.
- Return type
None
-
reduce
(robot)[source]¶ Sets self to a reduced version of robot, where all fixed DOFs are eliminated. The return value is a map from the original robot DOF indices to the reduced DOFs.
- Parameters
robot (
RobotModel
) –
Note that any geometries fixed to the world will disappear.
- Return type
None
-
mount
(link, subRobot, R, t)[source]¶ Mounts a sub-robot onto a link, with its origin at a given local transform (R,t). The sub-robot’s links will be renamed to subRobot.getName() + ‘:’ + link.getName() unless subRobot.getName() is ‘’, in which case the link names are preserved.
- Parameters
link (int) –
subRobot (
RobotModel
) –R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
sensor
(*args)[source]¶ Returns a sensor by index or by name.
sensor (index):
SimRobotSensor
sensor (name):
SimRobotSensor
- Parameters
index (int, optional) –
name (str, optional) –
- Returns
- Return type
If out of bounds or unavailable, a null sensor is returned (i.e., SimRobotSensor.name() or SimRobotSensor.type()) will return the empty string.)
- Return type
SimRobotSensor
-
addSensor
(name, type)[source]¶ Adds a new sensor with a given name and type.
- Parameters
name (str) –
type (str) –
- Returns
The new sensor.
- Return type
SimRobotSensor
-
property
world
¶ world : int
-
property
index
¶ index : int
-
property
robot
¶ robot : p.Klampt::RobotModel
-
property
dirty_dynamics
¶ dirty_dynamics : bool
-
property
name
¶ - Return type
str
-
property
id
¶ Returns the ID of the robot in its world.
Note
The world ID is not the same as the robot index.
- Return type
int
-
property
config
¶ Retrieves the current configuration of the robot model.
- Return type
None
-
property
velocity
¶ Retreives the current velocity of the robot model.
- Return type
None
-
class
klampt.
RobotModelLink
[source]¶ Bases:
object
A reference to a link of a RobotModel.
The link stores many mostly-constant items (id, name, parent, geometry, appearance, mass, joint axes). There are two exceptions:
the link’s current transform, which is affected by the RobotModel’s current configuration, i.e., the last
RobotModel.setConfig()
call.The various Jacobians of points on the link, accessed by
RobotModelLink.getJacobian()
,RobotModelLink.getPositionJacobian()
, andRobotModelLink.getOrientationJacobian()
, which are configuration dependent.
A RobotModelLink is not created by hand, but instead accessed using
RobotModel.link()
(index or name).C++ includes: robotmodel.h
Attributes:
The membership flag
world : int
robotIndex : int
robotPtr : p.Klampt::RobotModel
index : int
Returns the name of the robot link.
Returns the index of the link’s parent (on its robot).
Returns the inertial properties of the link.
Gets the transformation (R,t) to the parent link.
Gets the local rotational / translational axis.
Returns whether the joint is prismatic.
Gets the link’s current transformation (R,t) to the world frame.
Methods:
getID
()Returns the ID of the robot link in its world.
getName
()Returns the name of the robot link.
setName
(name)Sets the name of the robot link.
robot
()Returns a reference to the link’s robot.
getIndex
()Returns the index of the link (on its robot).
Returns the index of the link’s parent (on its robot).
setParent
(*args)Sets the link’s parent (must be on the same robot).
geometry
()Returns a reference to the link’s geometry.
Returns a reference to the link’s appearance.
getMass
()Returns the inertial properties of the link.
setMass
(mass)Sets the inertial proerties of the link.
Gets the transformation (R,t) to the parent link.
setParentTransform
(R, t)Sets transformation (R,t) to the parent link.
getAxis
()Gets the local rotational / translational axis.
setAxis
(axis)Sets the local rotational / translational axis.
Returns whether the joint is prismatic.
Returns whether the joint is revolute.
setPrismatic
(prismatic)Changes a link from revolute to prismatic or vice versa.
getWorldPosition
(plocal)Converts point from local to world coordinates.
getWorldDirection
(vlocal)Converts direction from local to world coordinates.
getLocalPosition
(pworld)Converts point from world to local coordinates.
getLocalDirection
(vworld)Converts direction from world to local coordinates.
Gets the link’s current transformation (R,t) to the world frame.
setTransform
(R, t)Sets the link’s current transformation (R,t) to the world frame.
Computes the velocity of the link’s origin given the robot’s current joint configuration and velocities.
Computes the angular velocity of the link given the robot’s current joint configuration and velocities.
getPointVelocity
(plocal)Computes the world velocity of a point attached to the link, given the robot’s current joint configuration and velocities.
getJacobian
(plocal)Computes the total jacobian of a point on this link w.r.t.
getPositionJacobian
(plocal)Computes the position jacobian of a point on this link w.r.t.
Computes the orientation jacobian of this link w.r.t.
getAcceleration
(ddq)Computes the acceleration of the link origin given the robot’s current joint configuration and velocities, and the joint accelerations ddq.
getPointAcceleration
(plocal, ddq)Computes the acceleration of the point given the robot’s current joint configuration and velocities, and the joint accelerations ddq.
Computes the angular acceleration of the link given the robot’s current joint configuration and velocities, and the joint accelerations ddq.
getPositionHessian
(plocal)Computes the Hessians of each component of the position p w.r.t the robot’s configuration q.
Computes the Hessians of each orientation component of the link w.r.t the robot’s configuration q.
drawLocalGL
([keepAppearance])Draws the link’s geometry in its local frame.
drawWorldGL
([keepAppearance])Draws the link’s geometry in the world frame.
-
property
thisown
¶ The membership flag
-
getID
()[source]¶ Returns the ID of the robot link in its world.
Note
The world ID is not the same as the link’s index, retrieved by getIndex.
- Return type
int
-
setParent
(*args)[source]¶ Sets the link’s parent (must be on the same robot).
setParent (p)
setParent (l)
- Parameters
p (int, optional) –
l (
RobotModelLink
, optional) –
- Return type
None
-
getMass
()[source]¶ Returns the inertial properties of the link. (Note that the Mass is given with origin at the link frame, not about the COM.)
- Return type
Mass
-
setMass
(mass)[source]¶ Sets the inertial proerties of the link. (Note that the Mass is given with origin at the link frame, not about the COM.)
- Parameters
mass (
Mass
) –- Return type
None
-
getParentTransform
()[source]¶ Gets the transformation (R,t) to the parent link.
- Returns
a pair (R,t), with R a 9-list and t a 3-list of floats, giving the local transform from this link to its parent, in the reference (zero) configuration.
- Return type
se3 object
- Return type
None
-
setParentTransform
(R, t)[source]¶ Sets transformation (R,t) to the parent link.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
setAxis
(axis)[source]¶ Sets the local rotational / translational axis.
- Parameters
axis (
list of 3 floats
) –- Return type
None
-
setPrismatic
(prismatic)[source]¶ Changes a link from revolute to prismatic or vice versa.
- Parameters
prismatic (bool) –
- Return type
None
-
getWorldPosition
(plocal)[source]¶ Converts point from local to world coordinates.
- Parameters
plocal (
list of 3 floats
) –- Returns
the world coordinates of the local point plocal
- Return type
list of 3 floats
- Return type
None
-
getWorldDirection
(vlocal)[source]¶ Converts direction from local to world coordinates.
- Parameters
vlocal (
list of 3 floats
) –- Returns
the world coordinates of the local direction vlocal
- Return type
list of 3 floats
- Return type
None
-
getLocalPosition
(pworld)[source]¶ Converts point from world to local coordinates.
- Parameters
pworld (
list of 3 floats
) –- Returns
the local coordinates of the world point pworld
- Return type
list of 3 floats
- Return type
None
-
getLocalDirection
(vworld)[source]¶ Converts direction from world to local coordinates.
- Parameters
vworld (
list of 3 floats
) –- Returns
the local coordinates of the world direction vworld
- Return type
list of 3 floats
- Return type
None
-
getTransform
()[source]¶ Gets the link’s current transformation (R,t) to the world frame.
- Returns
a pair (R,t), with R a 9-list and t a 3-list of floats.
- Return type
se3 object
- Return type
None
-
setTransform
(R, t)[source]¶ Sets the link’s current transformation (R,t) to the world frame.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
Note
This does NOT perform inverse kinematics. The transform is overwritten when the robot’s setConfig() method is called.
- Return type
None
-
getVelocity
()[source]¶ Computes the velocity of the link’s origin given the robot’s current joint configuration and velocities. Equivalent to getPointVelocity([0,0,0]).
- Returns
the current velocity of the link’s origin, in world coordinates
- Return type
list of 3 floats
- Return type
None
-
getAngularVelocity
()[source]¶ Computes the angular velocity of the link given the robot’s current joint configuration and velocities.
- Returns
the current angular velocity of the link, in world coordinates
- Return type
list of 3 floats
- Return type
None
-
getPointVelocity
(plocal)[source]¶ Computes the world velocity of a point attached to the link, given the robot’s current joint configuration and velocities.
- Parameters
plocal (
list of 3 floats
) –- Returns
the current velocity of the point, in world coordinates.
- Return type
list of 3 floats
- Return type
None
-
getJacobian
(plocal)[source]¶ Computes the total jacobian of a point on this link w.r.t. the robot’s configuration q.
- Parameters
plocal (
list of 3 floats
) –
The orientation jacobian is given in the first 3 rows, and is stacked on the position jacobian, which is given in the last 3 rows.
- Returns
the 6xn total Jacobian matrix of the point given by local coordinates plocal.
- Return type
ndarray
- Return type
None
-
getPositionJacobian
(plocal)[source]¶ Computes the position jacobian of a point on this link w.r.t. the robot’s configuration q.
- Parameters
plocal (
list of 3 floats
) –
This matrix J gives the point’s velocity (in world coordinates) via np.dot(J,dq), where dq is the robot’s joint velocities.
- Returns
the 3xn Jacobian matrix of the point given by local coordinates plocal.
- Return type
ndarray
- Return type
None
-
getOrientationJacobian
()[source]¶ Computes the orientation jacobian of this link w.r.t. the robot’s configuration q.
This matrix J gives the link’s angular velocity (in world coordinates) via np.dot(J,dq), where dq is the robot’s joint velocities.
- Returns
ndarray:: the 3xn orientation Jacobian matrix of the link.
- Return type
None
-
getAcceleration
(ddq)[source]¶ Computes the acceleration of the link origin given the robot’s current joint configuration and velocities, and the joint accelerations ddq.
- Parameters
ddq (
list of floats
) –
ddq can be empty, which calculates the acceleration with acceleration 0, and is a little faster than setting ddq to [0]*n
- Returns
the acceleration of the link’s origin, in world coordinates.
- Return type
list of 3 floats
- Return type
None
-
getPointAcceleration
(plocal, ddq)[source]¶ Computes the acceleration of the point given the robot’s current joint configuration and velocities, and the joint accelerations ddq.
- Parameters
plocal (
list of 3 floats
) –ddq (
list of floats
) –
- Returns
the acceleration of the point, in world coordinates.
- Return type
list of 3 floats
- Return type
None
-
getAngularAcceleration
(ddq)[source]¶ Computes the angular acceleration of the link given the robot’s current joint configuration and velocities, and the joint accelerations ddq.
- Parameters
ddq (
list of floats
) –- Returns
the angular acceleration of the link, in world coordinates.
- Return type
list of 3 floats
- Return type
None
-
getPositionHessian
(plocal)[source]¶ Computes the Hessians of each component of the position p w.r.t the robot’s configuration q.
- Parameters
plocal (
list of 3 floats
) –- Returns
a 3xnxn array with each of the elements in the first axis corresponding respectively, to the (x,y,z) components of the Hessian.
- Return type
ndarray
- Return type
None
-
getOrientationHessian
()[source]¶ Computes the Hessians of each orientation component of the link w.r.t the robot’s configuration q.
- Returns
a 3xnxn array with each of the elements in the first axis corresponding, respectively, to the (wx,wy,wz) components of the Hessian.
- Return type
ndarray
- Return type
None
-
drawLocalGL
(keepAppearance=True)[source]¶ Draws the link’s geometry in its local frame. If keepAppearance=true, the current Appearance is honored. Otherwise, just the geometry is drawn.
- Parameters
keepAppearance (bool, optional) – default value True
- Return type
None
-
drawWorldGL
(keepAppearance=True)[source]¶ Draws the link’s geometry in the world frame. If keepAppearance=true, the current Appearance is honored. Otherwise, just the geometry is drawn.
- Parameters
keepAppearance (bool, optional) – default value True
- Return type
None
-
property
world
¶ world : int
-
property
robotIndex
¶ robotIndex : int
-
property
robotPtr
¶ robotPtr : p.Klampt::RobotModel
-
property
index
¶ index : int
-
property
name
¶ Returns the name of the robot link.
- Return type
str
-
property
parent
¶ Returns the index of the link’s parent (on its robot).
- Return type
int
-
property
mass
¶ Returns the inertial properties of the link. (Note that the Mass is given with origin at the link frame, not about the COM.)
- Return type
Mass
-
property
parentTransform
¶ Gets the transformation (R,t) to the parent link.
- Returns
a pair (R,t), with R a 9-list and t a 3-list of floats, giving the local transform from this link to its parent, in the reference (zero) configuration.
- Return type
se3 object
- Return type
None
-
property
axis
¶ Gets the local rotational / translational axis.
- Return type
None
-
property
prismatic
¶ Returns whether the joint is prismatic.
- Return type
bool
-
property
transform
¶ Gets the link’s current transformation (R,t) to the world frame.
- Returns
a pair (R,t), with R a 9-list and t a 3-list of floats.
- Return type
se3 object
- Return type
None
-
class
klampt.
RigidObjectModel
[source]¶ Bases:
object
A rigid movable object.
A rigid object has a name, geometry, appearance, mass, surface properties, and current transform / velocity.
State is retrieved/set using get/setTransform, and get/setVelocity
C++ includes: robotmodel.h
Attributes:
The membership flag
world : int
index : int
object : p.Klampt::RigidObjectModel
Methods:
loadFile
(fn)Loads the object from the file fn.
saveFile
(fn[, geometryName])Saves the object to the file fn.
getID
()Returns the ID of the rigid object in its world.
getName
()- rtype
str
setName
(name)- param name
geometry
()Returns a reference to the geometry associated with this object.
Returns a reference to the appearance associated with this object.
getMass
()Returns a copy of the Mass of this rigid object.
setMass
(mass)- param mass
Returns a copy of the ContactParameters of this rigid object.
setContactParameters
(params)- param params
Retrieves the rotation / translation of the rigid object (R,t)
setTransform
(R, t)Sets the rotation / translation (R,t) of the rigid object.
Retrieves the (angular velocity, velocity) of the rigid object.
setVelocity
(angularVelocity, velocity)Sets the (angular velocity, velocity) of the rigid object.
drawGL
([keepAppearance])Draws the object’s geometry.
-
property
thisown
¶ The membership flag
-
saveFile
(fn, geometryName=None)[source]¶ Saves the object to the file fn. If geometryName is given, the geometry is saved to that file.
- Parameters
fn (str) –
geometryName (str, optional) – default value None
- Return type
bool
-
getID
()[source]¶ Returns the ID of the rigid object in its world.
Note
The world ID is not the same as the rigid object index.
- Return type
int
-
geometry
()[source]¶ Returns a reference to the geometry associated with this object.
- Return type
Geometry3D
-
appearance
()[source]¶ Returns a reference to the appearance associated with this object.
- Return type
Appearance
-
getMass
()[source]¶ Returns a copy of the Mass of this rigid object.
Note
To change the mass properties, you should call
m=object.getMass()
, change the desired properties in m, and thenobject.setMass(m)
- Return type
Mass
-
getContactParameters
()[source]¶ Returns a copy of the ContactParameters of this rigid object.
Note
To change the contact parameters, you should call
p=object.getContactParameters()
, change the desired properties in p, and then callobject.setContactParameters(p)
- Return type
ContactParameters
-
setContactParameters
(params)[source]¶ - Parameters
params (
ContactParameters
) –- Return type
None
-
getTransform
()[source]¶ Retrieves the rotation / translation of the rigid object (R,t)
- Returns
a pair (R,t), with R a 9-list and t a 3-list of floats, giving the transform to world coordinates.
- Return type
se3 object
- Return type
None
-
setTransform
(R, t)[source]¶ Sets the rotation / translation (R,t) of the rigid object.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
getVelocity
()[source]¶ Retrieves the (angular velocity, velocity) of the rigid object.
- Returns
A pair of 3-lists (w,v) where w is the angular velocity vector and v is the translational velocity vector (both in world coordinates)
- Return type
None
-
setVelocity
(angularVelocity, velocity)[source]¶ Sets the (angular velocity, velocity) of the rigid object.
- Parameters
angularVelocity (
list of 3 floats
) –velocity (
list of 3 floats
) –
- Return type
None
-
drawGL
(keepAppearance=True)[source]¶ Draws the object’s geometry. If keepAppearance=true, the current appearance is honored. Otherwise, only the raw geometry is drawn.
- Parameters
keepAppearance (bool, optional) – default value True
PERFORMANCE WARNING: if keepAppearance is false, then this does not properly reuse OpenGL display lists. A better approach is to change the object’s Appearance directly.
- Return type
None
-
property
world
¶ world : int
-
property
index
¶ index : int
-
property
object
¶ object : p.Klampt::RigidObjectModel
-
class
klampt.
TerrainModel
[source]¶ Bases:
object
Static environment geometry.
C++ includes: robotmodel.h
Attributes:
The membership flag
world : int
index : int
terrain : p.Klampt::TerrainModel
Methods:
loadFile
(fn)Loads the terrain from the file fn.
saveFile
(fn[, geometryName])Saves the terrain to the file fn.
getID
()Returns the ID of the terrain in its world.
getName
()- rtype
str
setName
(name)- param name
geometry
()Returns a reference to the geometry associated with this object.
Returns a reference to the appearance associated with this object.
setFriction
(friction)Changes the friction coefficient for this terrain.
drawGL
([keepAppearance])Draws the object’s geometry.
-
property
thisown
¶ The membership flag
-
saveFile
(fn, geometryName=None)[source]¶ Saves the terrain to the file fn. If geometryName is given, the geometry is saved to that file.
- Parameters
fn (str) –
geometryName (str, optional) – default value None
- Return type
bool
-
getID
()[source]¶ Returns the ID of the terrain in its world.
Note
The world ID is not the same as the terrain index.
- Return type
int
-
geometry
()[source]¶ Returns a reference to the geometry associated with this object.
- Return type
Geometry3D
-
appearance
()[source]¶ Returns a reference to the appearance associated with this object.
- Return type
Appearance
-
setFriction
(friction)[source]¶ Changes the friction coefficient for this terrain.
- Parameters
friction (float) –
- Return type
None
-
drawGL
(keepAppearance=True)[source]¶ Draws the object’s geometry. If keepAppearance=true, the current appearance is honored. Otherwise, only the raw geometry is drawn.
- Parameters
keepAppearance (bool, optional) – default value True
PERFORMANCE WARNING: if keepAppearance is false, then this does not properly reuse OpenGL display lists. A better approach is to change the object’s Appearance directly.
- Return type
None
-
property
world
¶ world : int
-
property
index
¶ index : int
-
property
terrain
¶ terrain : p.Klampt::TerrainModel
-
class
klampt.
Mass
[source]¶ Bases:
object
Stores mass information for a rigid body or robot link.
Note
Recommended to use the set/get functions rather than changing the members directly due to strangeness in SWIG’s handling of vectors.
-
mass
¶ the actual mass (typically in kg)
- Type
float
-
com
¶ the center of mass position, in local coordinates.
- Type
list of 3 floats
-
inertia
¶ the inertia matrix in local coordinates. If 3 floats, this is a diagonal matrix. If 9 floats, this gives all entries of the 3x3 inertia matrix (in column major or row major order, it doesn’t matter since inertia matrices are symmetric)
- Type
list of 3 floats or 9 floats
C++ includes: robotmodel.h
Attributes:
The membership flag
mass : double
Returns the COM as a list of 3 floats.
Returns the inertia matrix as a list of 3 floats or 9 floats.
Methods:
setMass
(_mass)- param _mass
getMass
()- rtype
float
setCom
(_com)- param _com
getCom
()Returns the COM as a list of 3 floats.
setInertia
(_inertia)Sets an inertia matrix.
Returns the inertia matrix as a list of 3 floats or 9 floats.
estimate
(g, mass[, surfaceFraction])Estimates the com and inertia of a geometry, with a given total mass.
-
property
thisown
¶ The membership flag
-
setInertia
(_inertia)[source]¶ Sets an inertia matrix.
- Parameters
_inertia (
list of floats
) –- Return type
None
-
getInertia
()[source]¶ Returns the inertia matrix as a list of 3 floats or 9 floats.
- Return type
None
-
estimate
(g, mass, surfaceFraction=0)[source]¶ Estimates the com and inertia of a geometry, with a given total mass.
- Parameters
g (
Geometry3D
) –mass (float) –
surfaceFraction (float, optional) – default value 0
For TriangleMesh types, surfaceFraction dictates how much of the object’s mass is concentrated at the surface rather than the interior.
- Return type
None
-
property
mass
¶ mass : double
-
property
com
¶ Returns the COM as a list of 3 floats.
- Return type
None
-
property
inertia
¶ Returns the inertia matrix as a list of 3 floats or 9 floats.
- Return type
None
-
-
class
klampt.
ContactParameters
[source]¶ Bases:
object
Stores contact parameters for an entity. Currently only used for simulation, but could be used for contact mechanics in the future.
-
kFriction
¶ The coefficient of (Coulomb) friction, in range [0,inf).
- Type
float
-
kRestitution
¶ The coefficient of restitution, in range [0,1].
- Type
float
-
kStiffness
¶ The stiffness of the material, in range (0,inf) (default inf, perfectly rigid).
- Type
float
-
kDamping
¶ The damping of the material, in range (0,inf) (default inf, perfectly rigid).
- Type
float
C++ includes: robotmodel.h
Attributes:
The membership flag
kFriction : double
kRestitution : double
kStiffness : double
kDamping : double
-
property
thisown
¶ The membership flag
-
property
kFriction
¶ kFriction : double
-
property
kRestitution
¶ kRestitution : double
-
property
kStiffness
¶ kStiffness : double
-
property
kDamping
¶ kDamping : double
-
-
class
klampt.
SimRobotController
[source]¶ Bases:
object
A controller for a simulated robot.
By default a SimRobotController has three possible modes:
Motion queue + PID mode: the controller has an internal trajectory queue that may be added to and modified. This queue supports piecewise linear interpolation, cubic interpolation, and time-optimal move-to commands.
PID mode: the user controls the motor’s PID setpoints directly
Torque control: the user controlls the motor torques directly.
The “standard” way of using this is in move-to mode which accepts a milestone (setMilestone) or list of milestones (repeated calls to addMilestone) and interpolates dynamically from the current configuration/velocity. To handle disturbances, a PID loop is run automatically at the controller’s specified rate.
To get finer-grained control over the motion queue’s timing, you may use the setLinear/setCubic/addLinear/addCubic functions. In these functions it is up to the user to respect velocity, acceleration, and torque limits.
Whether in motion queue or PID mode, the constants of the PID loop are initially set in the robot file. You can programmatically tune these via the setPIDGains function.
Arbitrary trajectories can be tracked by using setVelocity over short time steps. Force controllers can be implemented using setTorque, again using short time steps.
If the setVelocity, setTorque, or setPID command are called, the motion queue behavior will be completely overridden. To reset back to motion queue control, setManualMode(False) must be called first.
Individual joints cannot be addressed with mixed motion queue mode and torque/PID mode. However, you can mix PID and torque mode between different joints with a workaround:
# setup by zeroing out PID constants for torque controlled joints pid_joint_indices = [...] torque_joint_indices = [...] # complement of pid_joint_indices kp,ki,kp = controller.getPIDGains() for i in torque_joint_indices: #turn off PID gains here kp[i] = ki[i] = kp[i] = 0 # to send PID command (qcmd,dqcmd) and torque commands tcmd, use # a PID command with feedforward torques. First we build a whole-robot # command: qcmd_whole = [0]*controller.model().numLinks() dqcmd_whole = [0]*controller.model().numLinks() tcmd_whole = [0]*controller.model().numLinks() for i,k in enumerate(pid_joint_indices): qcmd_whole[k],dqcmd_whole[i] = qcmd[i],dqcmd[i] for i,k in enumerate(torque_joint_indices): tcmd_whole[k] = tcmd[i] # Then we send it to the controller controller.setPIDCommand(qcmd_whole,dqcmd_whole,tcmd_whole)
C++ includes: robotsim.h
Attributes:
The membership flag
index : int
sim : p.Simulator
controller : p.Klampt::SimRobotController
Methods:
model
()Retrieves the robot model associated with this controller.
setRate
(dt)Sets the current feedback control rate, in s.
getRate
()Returns The current feedback control rate, in s.
Returns The current commanded configuration (size model().numLinks())
Returns The current commanded velocity (size model().numLinks())
Returns The current commanded (feedforward) torque (size model().numDrivers())
Returns The current “sensed” configuration from the simulator (size model().numLinks())
Returns The current “sensed” velocity from the simulator (size model().numLinks())
Returns The current “sensed” (feedback) torque from the simulator.
sensor
(*args)Returns a sensor by index or by name.
addSensor
(name, type)Adds a new sensor with a given name and type.
commands
()Returns a custom command list.
sendCommand
(name, args)Sends a custom string command to the controller.
settings
()Returns all valid setting names.
getSetting
(name)Returns a setting of the controller.
setSetting
(name, val)Sets a setting of the controller.
setMilestone
(*args)Uses a dynamic interpolant to get from the current state to the desired milestone (with optional ending velocity).
addMilestone
(*args)Same as setMilestone, but appends an interpolant onto an internal motion queue starting at the current queued end state.
Same as addMilestone, but enforces that the motion should move along a straight- line joint-space path.
setLinear
(q, dt)Uses linear interpolation to get from the current configuration to the desired configuration after time dt.
setCubic
(q, v, dt)Uses cubic (Hermite) interpolation to get from the current configuration/velocity to the desired configuration/velocity after time dt.
addLinear
(q, dt)Same as setLinear but appends an interpolant onto the motion queue.
addCubic
(q, v, dt)Same as setCubic but appends an interpolant onto the motion queue.
Returns the remaining duration of the motion queue.
setVelocity
(dq, dt)Sets a rate controller from the current commanded config to move at rate dq for time dt > 0.
setTorque
(t)Sets a torque command controller.
setPIDCommand
(*args)Sets a PID command controller.
setManualMode
(enabled)Turns on/off manual mode, if either the setTorque or setPID command were previously set.
Returns the control type for the active controller.
setPIDGains
(kP, kI, kD)Sets the PID gains.
Returns the PID gains for the PID controller.
-
property
thisown
¶ The membership flag
-
setRate
(dt)[source]¶ Sets the current feedback control rate, in s.
- Parameters
dt (float) –
- Return type
None
-
getCommandedConfig
()[source]¶ Returns The current commanded configuration (size model().numLinks())
- Return type
None
-
getCommandedVelocity
()[source]¶ Returns The current commanded velocity (size model().numLinks())
- Return type
None
-
getCommandedTorque
()[source]¶ Returns The current commanded (feedforward) torque (size model().numDrivers())
- Return type
None
-
getSensedConfig
()[source]¶ Returns The current “sensed” configuration from the simulator (size model().numLinks())
- Return type
None
-
getSensedVelocity
()[source]¶ Returns The current “sensed” velocity from the simulator (size model().numLinks())
- Return type
None
-
getSensedTorque
()[source]¶ Returns The current “sensed” (feedback) torque from the simulator. (size model().numDrivers())
Note: a default robot doesn’t have a torque sensor, so this will be 0
- Return type
None
-
sensor
(*args)[source]¶ Returns a sensor by index or by name. If out of bounds or unavailable, a null sensor is returned (i.e., SimRobotSensor.name() or SimRobotSensor.type()) will return the empty string.)
sensor (index):
SimRobotSensor
sensor (name):
SimRobotSensor
- Parameters
index (int, optional) –
name (str, optional) –
- Returns
- Return type
- Return type
SimRobotSensor
-
addSensor
(name, type)[source]¶ Adds a new sensor with a given name and type.
- Parameters
name (str) –
type (str) –
- Returns
The new sensor.
- Return type
SimRobotSensor
-
sendCommand
(name, args)[source]¶ Sends a custom string command to the controller.
- Parameters
name (str) –
args (str) –
- Return type
bool
-
getSetting
(name)[source]¶ Returns a setting of the controller.
- Parameters
name (str) –
- Return type
str
-
setSetting
(name, val)[source]¶ Sets a setting of the controller.
- Parameters
name (str) –
val (str) –
- Return type
bool
-
setMilestone
(*args)[source]¶ Uses a dynamic interpolant to get from the current state to the desired milestone (with optional ending velocity). This interpolant is time-optimal with respect to the velocity and acceleration bounds.
setMilestone (q)
setMilestone (q,dq)
- Parameters
q (
list of floats
) –dq (
list of floats
, optional) –
- Return type
None
-
addMilestone
(*args)[source]¶ Same as setMilestone, but appends an interpolant onto an internal motion queue starting at the current queued end state.
addMilestone (q)
addMilestone (q,dq)
- Parameters
q (
list of floats
) –dq (
list of floats
, optional) –
- Return type
None
-
addMilestoneLinear
(q)[source]¶ Same as addMilestone, but enforces that the motion should move along a straight- line joint-space path.
- Parameters
q (
list of floats
) –- Return type
None
-
setLinear
(q, dt)[source]¶ Uses linear interpolation to get from the current configuration to the desired configuration after time dt.
- Parameters
q (
list of floats
) –dt (float) –
q has size model().numLinks(). dt must be > 0.
- Return type
None
-
setCubic
(q, v, dt)[source]¶ Uses cubic (Hermite) interpolation to get from the current configuration/velocity to the desired configuration/velocity after time dt.
- Parameters
q (
list of floats
) –v (
list of floats
) –dt (float) –
q and v have size model().numLinks(). dt must be > 0.
- Return type
None
-
addLinear
(q, dt)[source]¶ Same as setLinear but appends an interpolant onto the motion queue.
- Parameters
q (
list of floats
) –dt (float) –
- Return type
None
-
addCubic
(q, v, dt)[source]¶ Same as setCubic but appends an interpolant onto the motion queue.
- Parameters
q (
list of floats
) –v (
list of floats
) –dt (float) –
- Return type
None
-
setVelocity
(dq, dt)[source]¶ Sets a rate controller from the current commanded config to move at rate dq for time dt > 0. dq has size model().numLinks()
- Parameters
dq (
list of floats
) –dt (float) –
- Return type
None
-
setTorque
(t)[source]¶ Sets a torque command controller. t can have size model().numDrivers() or model().numLinks().
- Parameters
t (
list of floats
) –- Return type
None
-
setPIDCommand
(*args)[source]¶ Sets a PID command controller. If tfeedforward is provided, it is the feedforward torque vector.
setPIDCommand (qdes,dqdes)
setPIDCommand (qdes,dqdes,tfeedforward)
- Parameters
qdes (
list of floats
) –dqdes (
list of floats
) –tfeedforward (
list of floats
, optional) –
- Return type
None
-
setManualMode
(enabled)[source]¶ Turns on/off manual mode, if either the setTorque or setPID command were previously set.
- Parameters
enabled (bool) –
- Return type
None
-
getControlType
()[source]¶ Returns the control type for the active controller.
- Returns
One of
unknown
off
torque
PID
locked_velocity
- Return type
str
-
setPIDGains
(kP, kI, kD)[source]¶ Sets the PID gains. Arguments have size model().numDrivers().
- Parameters
kP (
list of floats
) –kI (
list of floats
) –kD (
list of floats
) –
- Return type
None
-
property
index
¶ index : int
-
property
sim
¶ sim : p.Simulator
-
property
controller
¶ controller : p.Klampt::SimRobotController
-
class
klampt.
SimRobotSensor
(robot, sensor)[source]¶ Bases:
object
A sensor on a simulated robot. Retrieve one from the controller using
SimRobotController.sensor()
, or create a new one usingSimRobotController.addSensor()
. You may also use kinematically-simulated sensors usingRobotModel.sensor()
or create a new one usingRobotModel.addSensor()
.Use
getMeasurements()
to get the currently simulated measurement vector.Sensors are automatically updated through the
Simulator.simulate()
call, andgetMeasurements()
retrieves the updated values. As a result, you may get garbage measurements before the first Simulator.simulate call is made.There is also a mode for doing kinematic simulation, which is supported (i.e., makes sensible measurements) for some types of sensors when just a robot / world model is given. This is similar to Simulation.fakeSimulate but the entire controller structure is bypassed. You can arbitrarily set the robot’s position, call
kinematicReset()
, and then callkinematicSimulate()
. Subsequent calls assume the robot is being driven along a trajectory until the nextkinematicReset()
is called.LaserSensor, CameraSensor, TiltSensor, AccelerometerSensor, GyroSensor, JointPositionSensor, JointVelocitySensor support kinematic simulation mode. FilteredSensor and TimeDelayedSensor also work. The force-related sensors (ContactSensor and ForceTorqueSensor) return 0’s in kinematic simulation.
To use get/setSetting, you will need to know the sensor attribute names and types as described in the Klampt sensor documentation (same as in the world or sensor XML file). Common settings include:
rate (float): how frequently the sensor is simulated
enabled (bool): whether the simulator simulates this sensor
link (int): the link on which this sensor lies (-1 for world)
Tsensor (se3 transform, serialized with loader.write_se3(T)): the transform of the sensor on the robot / world.
C++ includes: robotsim.h
- Parameters
robot (
RobotModel
) –sensor (
Klampt::SensorBase *
) –
Attributes:
The membership flag
robotModel : RobotModel
sensor : p.Klampt::SensorBase
Methods:
name
()Returns the name of the sensor.
type
()Returns the type of the sensor.
robot
()Returns the model of the robot to which this belongs.
Returns a list of names for the measurements (one per measurement).
Returns an array of measurements from the previous simulation (or kinematicSimulate) timestep.
settings
()Returns all setting names.
getSetting
(name)Returns the value of the named setting (you will need to manually parse this)
setSetting
(name, val)Sets the value of the named setting (you will need to manually cast an int/float/etc to a str)
Return whether the sensor is enabled during simulation (helper for getSetting)
setEnabled
(enabled)Sets whether the sensor is enabled (helper for setSetting)
getLink
()Returns the link on which the sensor is mounted (helper for getSetting)
setLink
(*args)Sets the link on which the sensor is mounted (helper for setSetting)
Returns the local transform of the sensor on the robot’s link.
Returns the world transform of the sensor given the robot’s current configuration.
setTransform
(R, t)Sets the local transform of the sensor on the robot’s link.
drawGL
(*args)Draws a sensor indicator using OpenGL.
kinematicSimulate
(*args)kinematicSimulate (dt)
resets a kinematic simulation so that a new initial condition can be set
-
property
thisown
¶ The membership flag
-
measurementNames
()[source]¶ Returns a list of names for the measurements (one per measurement).
- Return type
Sequence
[str
]
-
getMeasurements
()[source]¶ Returns an array of measurements from the previous simulation (or kinematicSimulate) timestep.
- Return type
None
-
getSetting
(name)[source]¶ Returns the value of the named setting (you will need to manually parse this)
- Parameters
name (str) –
- Return type
str
-
setSetting
(name, val)[source]¶ Sets the value of the named setting (you will need to manually cast an int/float/etc to a str)
- Parameters
name (str) –
val (str) –
- Return type
None
-
getEnabled
()[source]¶ Return whether the sensor is enabled during simulation (helper for getSetting)
- Return type
bool
-
setEnabled
(enabled)[source]¶ Sets whether the sensor is enabled (helper for setSetting)
- Parameters
enabled (bool) –
- Return type
None
-
getLink
()[source]¶ Returns the link on which the sensor is mounted (helper for getSetting)
- Return type
RobotModelLink
-
setLink
(*args)[source]¶ Sets the link on which the sensor is mounted (helper for setSetting)
setLink (link)
- Parameters
link (
RobotModelLink
or int) –- Return type
None
-
getTransform
()[source]¶ Returns the local transform of the sensor on the robot’s link. (helper for getSetting)
If the sensor doesn’t have a transform (such as a joint position or torque sensor) an exception will be raised.
- Return type
None
-
getTransformWorld
()[source]¶ Returns the world transform of the sensor given the robot’s current configuration. (helper for getSetting)
If the sensor doesn’t have a transform (such as a joint position or torque sensor) an exception will be raised.
- Return type
None
-
setTransform
(R, t)[source]¶ Sets the local transform of the sensor on the robot’s link. (helper for setSetting)
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
If the sensor doesn’t have a transform (such as a joint position or torque sensor) an exception will be raised.
- Return type
None
-
drawGL
(*args)[source]¶ Draws a sensor indicator using OpenGL. If measurements are given, the indicator is drawn as though these are the latest measurements, otherwise only an indicator is drawn.
drawGL ()
drawGL (np_array)
- Parameters
np_array (
1D Numpy array of floats
, optional) –- Return type
None
-
kinematicSimulate
(*args)[source]¶ kinematicSimulate (dt)
- Parameters
world (
WorldModel
, optional) –dt (float) –
- Return type
None
-
kinematicReset
()[source]¶ resets a kinematic simulation so that a new initial condition can be set
- Return type
None
-
property
robotModel
¶ robotModel : RobotModel
-
property
sensor
¶ sensor : p.Klampt::SensorBase
-
class
klampt.
SimBody
[source]¶ Bases:
object
A reference to a rigid body inside a Simulator (either a RigidObjectModel, TerrainModel, or a link of a RobotModel).
Can use this class to directly apply forces to or control positions / velocities of objects in the simulation.
Note
All changes are applied in the current simulation substep, not the duration provided to Simulation.simulate(). If you need fine-grained control, make sure to call Simulation.simulate() with time steps equal to the value provided to Simulation.setSimStep() (this is 0.001s by default). Or, use a hook from
SimpleSimulator
.Note
The transform of the body is centered at the object’s center of mass rather than the object’s reference frame given in the RobotModelLink or RigidObjectModel.
C++ includes: robotsim.h
A reference to a rigid body inside a Simulator (either a RigidObjectModel, TerrainModel, or a link of a RobotModel).
Can use this class to directly apply forces to or control positions / velocities of objects in the simulation.
Note
All changes are applied in the current simulation substep, not the duration provided to Simulation.simulate(). If you need fine-grained control, make sure to call Simulation.simulate() with time steps equal to the value provided to Simulation.setSimStep() (this is 0.001s by default). Or, use a hook from
SimpleSimulator
.Note
The transform of the body is centered at the object’s center of mass rather than the object’s reference frame given in the RobotModelLink or RigidObjectModel.
C++ includes: robotsim.h
Attributes:
The membership flag
sim : p.Simulator
objectID : int
geometry : p.Klampt::ODEGeometry
body : dBodyID
Methods:
getID
()Returns the object ID that this body associated with.
enable
([enabled])Sets the simulation of this body on/off.
Returns true if this body is being simulated.
enableDynamics
([enabled])Turns dynamic simulation of the body on/off.
- rtype
bool
applyWrench
(f, t)Applies a force and torque about the COM over the duration of the next Simulator.simulate(t) call.
applyForceAtPoint
(f, pworld)Applies a force at a given point (in world coordinates) over the duration of the next Simulator.simulate(t) call.
applyForceAtLocalPoint
(f, plocal)Applies a force at a given point (in local center-of-mass-centered coordinates) over the duration of the next Simulator.simulate(t) call.
setTransform
(R, t)Sets the body’s transformation at the current simulation time step (in center- of-mass centered coordinates).
Gets the body’s transformation at the current simulation time step (in center- of-mass centered coordinates).
setObjectTransform
(R, t)Sets the body’s transformation at the current simulation time step (in object- native coordinates)
Gets the body’s transformation at the current simulation time step (in object- native coordinates).
setVelocity
(w, v)Sets the angular velocity and translational velocity at the current simulation time step.
Returns the angular velocity and translational velocity.
setCollisionPadding
(padding)Sets the collision padding used for contact generation.
- rtype
float
setCollisionPreshrink
([shrinkVisualization])If set, preshrinks the geometry so that the padded geometry better matches the original mesh.
Gets (a copy of) the surface properties.
setSurface
(params)Sets the surface properties.
-
property
thisown
¶ The membership flag
-
enable
(enabled=True)[source]¶ Sets the simulation of this body on/off.
- Parameters
enabled (bool, optional) – default value True
- Return type
None
-
enableDynamics
(enabled=True)[source]¶ Turns dynamic simulation of the body on/off. If false, velocities will simply be integrated forward, and forces will not affect velocity i.e., it will be pure kinematic simulation.
- Parameters
enabled (bool, optional) – default value True
- Return type
None
-
applyWrench
(f, t)[source]¶ Applies a force and torque about the COM over the duration of the next Simulator.simulate(t) call.
- Parameters
f (
list of 3 floats
) –t (
list of 3 floats
) –
- Return type
None
-
applyForceAtPoint
(f, pworld)[source]¶ Applies a force at a given point (in world coordinates) over the duration of the next Simulator.simulate(t) call.
- Parameters
f (
list of 3 floats
) –pworld (
list of 3 floats
) –
- Return type
None
-
applyForceAtLocalPoint
(f, plocal)[source]¶ Applies a force at a given point (in local center-of-mass-centered coordinates) over the duration of the next Simulator.simulate(t) call.
- Parameters
f (
list of 3 floats
) –plocal (
list of 3 floats
) –
- Return type
None
-
setTransform
(R, t)[source]¶ Sets the body’s transformation at the current simulation time step (in center- of-mass centered coordinates).
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
getTransform
()[source]¶ Gets the body’s transformation at the current simulation time step (in center- of-mass centered coordinates).
- Return type
None
-
setObjectTransform
(R, t)[source]¶ Sets the body’s transformation at the current simulation time step (in object- native coordinates)
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
getObjectTransform
()[source]¶ Gets the body’s transformation at the current simulation time step (in object- native coordinates).
- Return type
None
-
setVelocity
(w, v)[source]¶ Sets the angular velocity and translational velocity at the current simulation time step.
- Parameters
w (
list of 3 floats
) –v (
list of 3 floats
) –
- Return type
None
-
setCollisionPadding
(padding)[source]¶ Sets the collision padding used for contact generation. At 0 padding the simulation will be unstable for triangle mesh and point cloud geometries. A larger value is useful to maintain simulation stability for thin or soft objects. Default is 0.0025.
- Parameters
padding (float) –
- Return type
None
-
setCollisionPreshrink
(shrinkVisualization=False)[source]¶ If set, preshrinks the geometry so that the padded geometry better matches the original mesh. If shrinkVisualization=true, the underlying mesh is also shrunk (helps debug simulation artifacts due to preshrink)
- Parameters
shrinkVisualization (bool, optional) – default value False
- Return type
None
-
setSurface
(params)[source]¶ Sets the surface properties.
- Parameters
params (
ContactParameters
) –- Return type
None
-
property
sim
¶ sim : p.Simulator
-
property
objectID
¶ objectID : int
-
property
geometry
¶ geometry : p.Klampt::ODEGeometry
-
property
body
¶ body : dBodyID
-
class
klampt.
SimJoint
[source]¶ Bases:
object
An interface to ODE’s hinge and slider joints. You may use this to create custom objects, e.g., drawers, doors, cabinets, etc. It can also be used to attach objects together, e.g., an object to a robot’s gripper.
C++ includes: robotsim.h
Attributes:
The membership flag
type : int
a : p.q(const).SimBody
b : p.q(const).SimBody
joint : dJointID
Methods:
makeHinge
(*args)makeHinge (a,pt,axis)
makeSlider
(*args)makeSlider (a,axis)
makeFixed
(a, b)Creates a fixed joint between a and b.
destroy
()Removes the joint from the simulation.
setLimits
(min, max)Sets the joint limits, relative to the initial configuration of the bodies.
setFriction
(friction)Sets the (dry) friction of the joint.
setVelocity
(vel, fmax)Locks velocity of the joint, up to force fmax.
addForce
(force)Adds a torque for the hinge joint and a force for a slider joint.
-
property
thisown
¶ The membership flag
-
makeFixed
(a, b)[source]¶ Creates a fixed joint between a and b. (There’s no method to fix a to the world; just call a.enableDynamics(False))
-
setLimits
(min, max)[source]¶ Sets the joint limits, relative to the initial configuration of the bodies. Units are in radians for hinges and meters for sliders.
- Parameters
min (float) –
max (float) –
- Return type
None
-
setFriction
(friction)[source]¶ Sets the (dry) friction of the joint.
- Parameters
friction (float) –
- Return type
None
-
setVelocity
(vel, fmax)[source]¶ Locks velocity of the joint, up to force fmax. Can’t be used with setFriction.
- Parameters
vel (float) –
fmax (float) –
- Return type
None
-
addForce
(force)[source]¶ Adds a torque for the hinge joint and a force for a slider joint.
- Parameters
force (float) –
- Return type
None
-
property
type
¶ type : int
-
property
a
¶ a : p.q(const).SimBody
-
property
b
¶ b : p.q(const).SimBody
-
property
joint
¶ joint : dJointID
-
property
-
class
klampt.
Simulator
(model)[source]¶ Bases:
object
A dynamics simulator for a WorldModel.
C++ includes: robotsim.h
Constructs the simulator from a WorldModel. If the WorldModel was loaded from an XML file, then the simulation setup is loaded from it.
- Parameters
model (
WorldModel
) –
Attributes:
The membership flag
index : int
world : WorldModel
sim : p.Klampt::Simulator
initialState : std::string
Methods:
reset
()Resets to the initial state (same as setState(initialState))
Returns an indicator code for the simulator status.
getStatusString
([s])Returns a string indicating the simulator’s status.
Checks if any objects are overlapping.
getState
()Gets the current simulation state, including controller parameters, etc.
setState
(str)Sets the current simulation state from a Base64 string returned by a prior getState call.
simulate
(t)Advances the simulation by time t, and updates the world model from the simulation state.
fakeSimulate
(t)Advances a faked simulation by time t, and updates the world model from the faked simulation state.
getTime
()Returns the simulation time.
Updates the world model from the current simulation state.
getActualConfig
(robot)Returns the current actual configuration of the robot from the simulator.
getActualVelocity
(robot)Returns the current actual velocity of the robot from the simulator.
getActualTorque
(robot)Returns the current actual torques on the robot’s drivers from the simulator.
getActualTorques
(robot)Deprecated: renamed to getActualTorque to be consistent with SimRobotController methods.
enableContactFeedback
(obj1, obj2)Call this to enable contact feedback between the two objects (arguments are indexes returned by object.getID()).
Call this to enable contact feedback between all pairs of objects.
inContact
(aid, bid)Returns true if the objects (indexes returned by object.getID()) are in contact on the current time step.
getContacts
(aid, bid)Returns the nx7 list of contacts (x,n,kFriction) at the last time step.
getContactForces
(aid, bid)Returns the list of contact forces on object a at the last time step.
contactForce
(aid, bid)Returns the contact force on object a at the last time step.
contactTorque
(aid, bid)Returns the contact force on object a (about a’s origin) at the last time step.
hadContact
(aid, bid)Returns true if the objects had contact over the last simulate() call.
hadSeparation
(aid, bid)Returns true if the objects had ever separated during the last simulate() call.
hadPenetration
(aid, bid)Returns true if the objects interpenetrated during the last simulate() call.
meanContactForce
(aid, bid)Returns the average contact force on object a over the last simulate() call.
controller
(*args)Returns a controller for the indicated robot, either by index or by RobotModel.
body
(*args)Return the SimBody corresponding to the given link, rigid object, or terrain.
getJointForces
(link)Returns the joint force and torque local to the link, as would be read by a force-torque sensor mounted at the given link’s origin.
setGravity
(g)Sets the overall gravity vector.
setSimStep
(dt)Sets the internal simulation substep.
settings
()Returns all setting names.
getSetting
(name)Retrieves some simulation setting.
setSetting
(name, value)Sets some simulation setting.
-
property
thisown
¶ The membership flag
-
STATUS_NORMAL
= 0¶
-
STATUS_ADAPTIVE_TIME_STEPPING
= 1¶
-
STATUS_CONTACT_UNRELIABLE
= 2¶
-
STATUS_UNSTABLE
= 3¶
-
STATUS_ERROR
= 4¶
-
getStatus
()[source]¶ Returns an indicator code for the simulator status.
- Returns
One of the STATUS_X flags. (Technically, this returns the worst status over the last simulate() call)
- Return type
int
-
getStatusString
(s=- 1)[source]¶ Returns a string indicating the simulator’s status. If s is provided and >= 0, this function maps the indicator code s to a string.
- Parameters
s (int, optional) – default value -1
- Return type
str
-
checkObjectOverlap
()[source]¶ Checks if any objects are overlapping.
- Returns
A pair of lists of integers, giving the pairs of object ids that are overlapping.
- Return type
None
-
getState
()[source]¶ Gets the current simulation state, including controller parameters, etc.
- Returns
A Base64 string representing the binary data for the state
- Return type
str
-
setState
(str)[source]¶ Sets the current simulation state from a Base64 string returned by a prior getState call.
- Parameters
str (str) –
- Return type
None
-
simulate
(t)[source]¶ Advances the simulation by time t, and updates the world model from the simulation state.
- Parameters
t (float) –
- Return type
None
-
fakeSimulate
(t)[source]¶ Advances a faked simulation by time t, and updates the world model from the faked simulation state.
- Parameters
t (float) –
- Return type
None
-
updateWorld
()[source]¶ Updates the world model from the current simulation state. This only needs to be called if you change the world model and want to revert back to the simulation state.
- Return type
None
-
getActualConfig
(robot)[source]¶ Returns the current actual configuration of the robot from the simulator.
- Parameters
robot (int) –
- Return type
None
-
getActualVelocity
(robot)[source]¶ Returns the current actual velocity of the robot from the simulator.
- Parameters
robot (int) –
- Return type
None
-
getActualTorque
(robot)[source]¶ Returns the current actual torques on the robot’s drivers from the simulator.
- Parameters
robot (int) –
- Return type
None
-
getActualTorques
(robot)[source]¶ Deprecated: renamed to getActualTorque to be consistent with SimRobotController methods.
- Parameters
robot (int) –
- Return type
None
-
enableContactFeedback
(obj1, obj2)[source]¶ Call this to enable contact feedback between the two objects (arguments are indexes returned by object.getID()). Contact feedback has a small overhead so you may want to do this selectively. This must be called before using inContact, getContacts, getContactForces, contactForce, contactTorque, hadContact, hadSeparation, hadPenetration, and meanContactForce.
- Parameters
obj1 (int) –
obj2 (int) –
- Return type
None
-
enableContactFeedbackAll
()[source]¶ Call this to enable contact feedback between all pairs of objects. Contact feedback has a small overhead so you may want to do this selectively.
- Return type
None
-
inContact
(aid, bid)[source]¶ Returns true if the objects (indexes returned by object.getID()) are in contact on the current time step. You can set bid=-1 to tell if object a is in contact with any object.
- Parameters
aid (int) –
bid (int) –
- Return type
bool
-
getContacts
(aid, bid)[source]¶ Returns the nx7 list of contacts (x,n,kFriction) at the last time step. Normals point into object a. Each contact point (x,n,kFriction) is represented as a 7-element vector.
- Parameters
aid (int) –
bid (int) –
- Return type
None
-
getContactForces
(aid, bid)[source]¶ Returns the list of contact forces on object a at the last time step. Result is an nx3 array.
- Parameters
aid (int) –
bid (int) –
- Return type
None
-
contactForce
(aid, bid)[source]¶ Returns the contact force on object a at the last time step. You can set bid to -1 to get the overall contact force on object a.
- Parameters
aid (int) –
bid (int) –
- Return type
None
-
contactTorque
(aid, bid)[source]¶ Returns the contact force on object a (about a’s origin) at the last time step. You can set bid to -1 to get the overall contact force on object a.
- Parameters
aid (int) –
bid (int) –
- Return type
None
-
hadContact
(aid, bid)[source]¶ Returns true if the objects had contact over the last simulate() call. You can set bid to -1 to determine if object a had contact with any other object.
- Parameters
aid (int) –
bid (int) –
- Return type
bool
-
hadSeparation
(aid, bid)[source]¶ Returns true if the objects had ever separated during the last simulate() call. You can set bid to -1 to determine if object a had no contact with any other object.
- Parameters
aid (int) –
bid (int) –
- Return type
bool
-
hadPenetration
(aid, bid)[source]¶ Returns true if the objects interpenetrated during the last simulate() call. If so, the simulation may lead to very inaccurate results or artifacts.
- Parameters
aid (int) –
bid (int) –
You can set bid to -1 to determine if object a penetrated any object, or you can set aid=bid=-1 to determine whether any object is penetrating any other (indicating that the simulation will not be functioning properly in general).
- Return type
bool
-
meanContactForce
(aid, bid)[source]¶ Returns the average contact force on object a over the last simulate() call.
- Parameters
aid (int) –
bid (int) –
- Return type
None
-
controller
(*args)[source]¶ Returns a controller for the indicated robot, either by index or by RobotModel.
controller (robot):
SimRobotController
- Parameters
robot (
RobotModel
or int) –- Returns
- Return type
- Return type
SimRobotController
-
body
(*args)[source]¶ Return the SimBody corresponding to the given link, rigid object, or terrain.
body (link):
SimBody
body (object):
SimBody
body (terrain):
SimBody
- Parameters
link (
RobotModelLink
, optional) –object (
RigidObjectModel
, optional) –terrain (
TerrainModel
, optional) –
- Returns
- Return type
- Return type
SimBody
-
getJointForces
(link)[source]¶ Returns the joint force and torque local to the link, as would be read by a force-torque sensor mounted at the given link’s origin.
- Parameters
link (
RobotModelLink
) –- Returns
6 entries of the wrench (fx,fy,fz,mx,my,mz)
- Return type
None
-
setGravity
(g)[source]¶ Sets the overall gravity vector.
- Parameters
g (
list of 3 floats
) –- Return type
None
-
setSimStep
(dt)[source]¶ Sets the internal simulation substep. Values < 0.01 are recommended.
- Parameters
dt (float) –
- Return type
None
-
getSetting
(name)[source]¶ Retrieves some simulation setting.
- Parameters
name (str) –
Valid names are:
gravity: the gravity vector (default “0 0 -9.8”)
simStep: the internal simulation step (default “0.001”)
autoDisable: whether to disable bodies that don’t move much between time steps (default “0”, set to “1” for many static objects)
boundaryLayerCollisions: whether to use the Klampt inflated boundaries for contact detection’(default “1”, recommended)
rigidObjectCollisions: whether rigid objects should collide (default “1”)
robotSelfCollisions: whether robots should self collide (default “0”)
robotRobotCollisions: whether robots should collide with other robots (default “1”)
adaptiveTimeStepping: whether adaptive time stepping should be used to improve stability. Slower but more stable. (default “1”)
minimumAdaptiveTimeStep: the minimum size of an adaptive time step before giving up (default “1e-6”)
maxContacts: max # of clustered contacts between pairs of objects (default “20”)
clusterNormalScale: a parameter for clustering contacts (default “0.1”)
errorReductionParameter: see ODE docs on ERP (default “0.95”)
dampedLeastSquaresParameter: see ODE docs on CFM (default “1e-6”)
instabilityConstantEnergyThreshold: parameter c0 in instability correction (default “1”)
instabilityLinearEnergyThreshold: parameter c1 in instability correction (default “1.5”)
instabilityMaxEnergyThreshold: parameter cmax in instability correction (default “100000”)
instabilityPostCorrectionEnergy: kinetic energy scaling parameter if instability is detected (default “0.8”)
Instability correction kicks in whenever the kinetic energy K(t) of an object exceeds min(c0*m + c1*K(t-dt),cmax). m is the object’s mass.
See Klampt/Simulation/ODESimulator.h for detailed descriptions of these parameters.
- Returns
A string encoding the data. This will need to be cast to int or float manually.
- Return type
str
-
setSetting
(name, value)[source]¶ Sets some simulation setting. Raises an exception if the name is unknown or the value is of improper format.
- Parameters
name (str) –
value (str) –
- Return type
None
-
property
index
¶ index : int
-
property
world
¶ world : WorldModel
-
property
sim
¶ sim : p.Klampt::Simulator
-
property
initialState
¶ initialState : std::string
-
class
klampt.
Geometry3D
(*args)[source]¶ Bases:
object
The three-D geometry container used throughout Klampt.
There are five currently supported types of geometry:
primitives (
GeometricPrimitive
)triangle meshes (
TriangleMesh
)point clouds (
PointCloud
)volumetric grids (
VolumeGrid
)groups (“Group” type)
convex hulls (
ConvexHull
)
This class acts as a uniform container of all of these types.
There are two modes in which a Geometry3D can be used. It can be a standalone geometry, which means it is a container of geometry data, or it can be a reference to a world item’s geometry. For references, modifiers change the world item’s geometry.
Current transform
Each geometry stores a “current” transform, which is automatically updated for world items’ geometries. Proximity queries are then performed with respect to the transformed geometries. Crucially, the underlying geometry is not changed, because that could be computationally expensive.
Creating / modifying the geometry
Use the constructor, the
set()
, or the set[TYPE]() methods to completely change the geometry’s data.Note: if you want to set a world item’s geometry to be equal to a standalone geometry, use the set(rhs) function rather than the assignment (=) operator.
Modifiers include:
setCurrentTransform()
: updates the current transform. (This call is very fast.)translate()
,scale()
,rotate()
, andtransform()
transform the underlying geometry. Any collision data structures will be recomputed after transformation.loadFile()
: load from OFF, OBJ, STL, PCD, etc. Also supports native Klamp’t types .geom and .vol.
Note
Avoid the use of translate, rotate, and transform to represent object movement. Use setCurrentTransform instead.
Proximity queries
collides()
: boolean collision query.withinDistance()
: boolean proximity query.distance()
anddistance_ext()
: numeric-valued distance query. The distance may be negative to indicate signed distance, available for certain geometry types. Also returns closest points for certain geometry types.distance_point()
anddistance_point_ext()
: numeric valued distance-to-point queries.contacts()
: estimates the contact region between two objects.rayCast()
andrayCast_ext()
: ray-cast queries.
For most geometry types (TriangleMesh, PointCloud, ConvexHull), the first time you perform a query, some collision detection data structures will be initialized. This preprocessing step can take some time for complex geometries.
Collision margins
Each object also has a “collision margin” which may virtually fatten the object, as far as proximity queries are concerned. This is useful for setting collision avoidance margins in motion planning. Use the
setCollisionMargin()
andgetCollisionMargin()
methods to access the margin. By default the margin is zero.Note
The geometry margin is NOT the same thing as simulation body collision padding! All proximity queries are affected by the collision padding, inside or outside of simulation.
Conversions
Many geometry types can be converted to and from one another using the
convert()
method. This can also be used to remesh TriangleMesh objects and PointCloud objects.C++ includes: geometry.h
__init__ ():
Geometry3D
__init__ (arg2):
Geometry3D
- Parameters
arg2 (
TriangleMesh
orConvexHull
orGeometricPrimitive
orGeometry3D
orVolumeGrid
orPointCloud
, optional) –
Attributes:
The membership flag
world : int
id : int
geomPtr : p.void
Methods:
clone
()Creates a standalone geometry from this geometry (identical to copy.
copy
()Creates a standalone geometry from this geometry.
set
(arg2)Copies the geometry of the argument into this geometry.
Returns True if this is a standalone geometry.
free
()Frees the data associated with this geometry, if standalone.
type
()Returns the type of geometry: TriangleMesh, PointCloud, VolumeGrid, GeometricPrimitive, or Group.
empty
()Returns True if this has no contents (not the same as numElements()==0)
Returns a TriangleMesh if this geometry is of type TriangleMesh.
Returns a PointCloud if this geometry is of type PointCloud.
Returns a GeometricPrimitive if this geometry is of type GeometricPrimitive.
Returns a ConvexHull if this geometry is of type ConvexHull.
Returns a VolumeGrid if this geometry is of type VolumeGrid.
setTriangleMesh
(arg2)Sets this Geometry3D to a TriangleMesh.
setPointCloud
(arg2)Sets this Geometry3D to a PointCloud.
setGeometricPrimitive
(arg2)Sets this Geometry3D to a GeometricPrimitive.
setConvexHull
(arg2)Sets this Geometry3D to a ConvexHull.
setConvexHullGroup
(g1, g2)Sets this Geometry3D to be a convex hull of two geometries.
setVolumeGrid
(arg2)Sets this Geometry3D to a volumeGrid.
setGroup
()Sets this Geometry3D to a group geometry.
getElement
(element)Returns an element of the Geometry3D if it is a Group, TriangleMesh, or PointCloud.
setElement
(element, data)Sets an element of the Geometry3D if it is a Group, TriangleMesh, or PointCloud.
Returns the number of sub-elements in this geometry.
loadFile
(fn)Loads from file.
saveFile
(fn)Saves to file.
setCurrentTransform
(R, t)Sets the current transformation (not modifying the underlying data)
Gets the current transformation.
translate
(t)Translates the geometry data.
scale
(*args)Scales the geometry data with different factors on each axis.
rotate
(R)Rotates the geometry data.
transform
(R, t)Translates/rotates/scales the geometry data.
setCollisionMargin
(margin)Sets a padding around the base geometry which affects the results of proximity queries.
Returns the padding around the base geometry.
getBB
()Returns an axis-aligned bounding box of the object as a tuple (bmin,bmax).
Computes a tighter axis-aligned bounding box of the object than
Geometry3D.getBB()
.convert
(type[, param])Converts a geometry to another type, if a conversion is available.
collides
(other)Returns true if this geometry collides with the other.
withinDistance
(other, tol)Returns true if this geometry is within distance tol to other.
distance_simple
(other[, relErr, absErr])Version 0.8: this is the same as the old distance() function.
distance_point
(pt)Returns the the distance and closest point to the input point, given in world coordinates.
distance_point_ext
(pt, settings)A customizable version of
Geometry3D.distance_point()
.distance
(other)Returns the the distance and closest points between the given geometries.
distance_ext
(other, settings)A customizable version of
Geometry3D.distance()
.rayCast
(s, d)Performs a ray cast.
rayCast_ext
(s, d)A more sophisticated ray cast.
contacts
(other, padding1, padding2[, …])Returns the set of contact points between this and other.
support
(dir)Calculates the furthest point on this geometry in the direction dir.
slice
(R, t, tol)Calculates a 2D slice through the data.
roi
(query, bmin, bmax)Calculates a region of interest of the data for the bounding box [bmin,bmax].
-
property
thisown
¶ The membership flag
-
clone
()[source]¶ Creates a standalone geometry from this geometry (identical to copy… will be deprecated in a future version)
- Return type
Geometry3D
-
set
(arg2)[source]¶ Copies the geometry of the argument into this geometry.
- Parameters
arg2 (
Geometry3D
) –- Return type
None
-
type
()[source]¶ Returns the type of geometry: TriangleMesh, PointCloud, VolumeGrid, GeometricPrimitive, or Group.
- Return type
str
-
empty
()[source]¶ Returns True if this has no contents (not the same as numElements()==0)
- Return type
bool
-
getTriangleMesh
()[source]¶ Returns a TriangleMesh if this geometry is of type TriangleMesh.
- Return type
TriangleMesh
-
getPointCloud
()[source]¶ Returns a PointCloud if this geometry is of type PointCloud.
- Return type
PointCloud
-
getGeometricPrimitive
()[source]¶ Returns a GeometricPrimitive if this geometry is of type GeometricPrimitive.
- Return type
GeometricPrimitive
-
getConvexHull
()[source]¶ Returns a ConvexHull if this geometry is of type ConvexHull.
- Return type
ConvexHull
-
getVolumeGrid
()[source]¶ Returns a VolumeGrid if this geometry is of type VolumeGrid.
- Return type
VolumeGrid
-
setTriangleMesh
(arg2)[source]¶ Sets this Geometry3D to a TriangleMesh.
- Parameters
arg2 (
TriangleMesh
) –- Return type
None
-
setPointCloud
(arg2)[source]¶ Sets this Geometry3D to a PointCloud.
- Parameters
arg2 (
PointCloud
) –- Return type
None
-
setGeometricPrimitive
(arg2)[source]¶ Sets this Geometry3D to a GeometricPrimitive.
- Parameters
arg2 (
GeometricPrimitive
) –- Return type
None
-
setConvexHull
(arg2)[source]¶ Sets this Geometry3D to a ConvexHull.
- Parameters
arg2 (
ConvexHull
) –- Return type
None
-
setConvexHullGroup
(g1, g2)[source]¶ Sets this Geometry3D to be a convex hull of two geometries. Note: the relative transform of these two objects is frozen in place; i.e., setting the current transform of g2 doesn’t do anything to this object.
- Parameters
g1 (
Geometry3D
) –g2 (
Geometry3D
) –
- Return type
None
-
setVolumeGrid
(arg2)[source]¶ Sets this Geometry3D to a volumeGrid.
- Parameters
arg2 (
VolumeGrid
) –- Return type
None
-
setGroup
()[source]¶ Sets this Geometry3D to a group geometry. To add sub-geometries, repeatedly call setElement() with increasing indices.
- Return type
None
-
getElement
(element)[source]¶ Returns an element of the Geometry3D if it is a Group, TriangleMesh, or PointCloud. Raises an error if this is of any other type.
- Parameters
element (int) –
The element will be in local coordinates.
- Return type
Geometry3D
-
setElement
(element, data)[source]¶ Sets an element of the Geometry3D if it is a Group, TriangleMesh, or PointCloud. The element will be in local coordinates. Raises an error if this is of any other type.
- Parameters
element (int) –
data (
Geometry3D
) –
- Return type
None
-
loadFile
(fn)[source]¶ Loads from file. Standard mesh types, PCD files, and .geom files are supported.
- Parameters
fn (str) –
- Returns
True on success, False on failure
- Return type
bool
-
saveFile
(fn)[source]¶ Saves to file. Standard mesh types, PCD files, and .geom files are supported.
- Parameters
fn (str) –
- Return type
bool
-
setCurrentTransform
(R, t)[source]¶ Sets the current transformation (not modifying the underlying data)
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
translate
(t)[source]¶ Translates the geometry data. Permanently modifies the data and resets any collision data structures.
- Parameters
t (
list of 3 floats
) –- Return type
None
-
scale
(*args)[source]¶ Scales the geometry data with different factors on each axis. Permanently modifies the data and resets any collision data structures.
scale (s)
scale (sx,sy,sz)
- Parameters
s (float, optional) –
sx (float, optional) –
sy (float, optional) –
sz (float, optional) –
- Return type
None
-
rotate
(R)[source]¶ Rotates the geometry data. Permanently modifies the data and resets any collision data structures.
- Parameters
R (
list of 9 floats (so3 element)
) –- Return type
None
-
transform
(R, t)[source]¶ Translates/rotates/scales the geometry data. Permanently modifies the data and resets any collision data structures.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
setCollisionMargin
(margin)[source]¶ Sets a padding around the base geometry which affects the results of proximity queries.
- Parameters
margin (float) –
- Return type
None
-
getCollisionMargin
()[source]¶ Returns the padding around the base geometry. Default 0.
- Return type
float
-
getBB
()[source]¶ Returns an axis-aligned bounding box of the object as a tuple (bmin,bmax).
Note: O(1) time, but may not be tight
- Return type
None
-
getBBTight
()[source]¶ Computes a tighter axis-aligned bounding box of the object than
Geometry3D.getBB()
. Worst case O(n) time.- Return type
None
-
convert
(type, param=0)[source]¶ Converts a geometry to another type, if a conversion is available. The interpretation of param depends on the type of conversion, with 0 being a reasonable default.
- Parameters
type (str) –
param (float, optional) – default value 0
Available conversions are:
TriangleMesh -> PointCloud. param is the desired dispersion of the points, by default set to the average triangle diameter. At least all of the mesh’s vertices will be returned.
TriangleMesh -> VolumeGrid. Converted using the fast marching method with good results only if the mesh is watertight. param is the grid resolution, by default set to the average triangle diameter.
TriangleMesh -> ConvexHull. If param==0, just calculates a convex hull. Otherwise, uses convex decomposition with the HACD library.
PointCloud -> TriangleMesh. Available if the point cloud is structured. param is the threshold for splitting triangles by depth discontinuity. param is by default infinity.
PointCloud -> ConvexHull. Converted using SOLID / Qhull.
GeometricPrimitive -> anything. param determines the desired resolution.
VolumeGrid -> TriangleMesh. param determines the level set for the marching cubes algorithm.
VolumeGrid -> PointCloud. param determines the level set.
ConvexHull -> TriangleMesh.
ConvexHull -> PointCloud. param is the desired dispersion of the points. Equivalent to ConvexHull -> TriangleMesh -> PointCloud
- Return type
Geometry3D
-
collides
(other)[source]¶ Returns true if this geometry collides with the other.
- Parameters
other (
Geometry3D
) –
Unsupported types:
VolumeGrid - GeometricPrimitive [aabb, box, triangle, polygon]
VolumeGrid - TriangleMesh
VolumeGrid - VolumeGrid
ConvexHull - anything else besides ConvexHull
- Return type
bool
-
withinDistance
(other, tol)[source]¶ Returns true if this geometry is within distance tol to other.
- Parameters
other (
Geometry3D
) –tol (float) –
- Return type
bool
-
distance_simple
(other, relErr=0, absErr=0)[source]¶ Version 0.8: this is the same as the old distance() function.
- Parameters
other (
Geometry3D
) –relErr (float, optional) – default value 0
absErr (float, optional) – default value 0
Returns the distance from this geometry to the other. If either geometry contains volume information, this value may be negative to indicate penetration. See
Geometry3D.distance()
for more information.- Return type
float
-
distance_point
(pt)[source]¶ Returns the the distance and closest point to the input point, given in world coordinates. An exception is raised if this operation is not supported with the given geometry type.
- Parameters
pt (
list of 3 floats
) –
The return value contains the distance, closest points, and gradients if available.
For some geometry types, the signed distance is returned. The signed distance returns the negative penetration depth if pt is within this. The following geometry types return signed distances:
GeometricPrimitive
PointCloud (approximate, if the cloud is a set of balls with the radius property)
VolumeGrid
ConvexHull
For other types, a signed distance will be returned if the geometry has a positive collision margin, and the point penetrates less than this margin.
- Return type
DistanceQueryResult
-
distance_point_ext
(pt, settings)[source]¶ A customizable version of
Geometry3D.distance_point()
. The settings for the calculation can be customized with relErr, absErr, and upperBound, e.g., to break if the closest points are at least upperBound distance from one another.- Parameters
pt (
list of 3 floats
) –settings (
DistanceQuerySettings
) –
- Return type
DistanceQueryResult
-
distance
(other)[source]¶ Returns the the distance and closest points between the given geometries. This may be either the normal distance or the signed distance, depending on the geometry type.
- Parameters
other (
Geometry3D
) –
The normal distance returns 0 if the two objects are touching (this.collides(other)=True).
The signed distance returns the negative penetration depth if the objects are touching. Only the following combinations of geometry types return signed distances:
GeometricPrimitive-GeometricPrimitive (Python-supported sub-types only)
GeometricPrimitive-TriangleMesh (surface only)
GeometricPrimitive-PointCloud
GeometricPrimitive-VolumeGrid
TriangleMesh (surface only)-GeometricPrimitive
PointCloud-VolumeGrid
ConvexHull - ConvexHull
If penetration is supported, a negative distance is returned and cp1,cp2 are the deepest penetrating points.
Unsupported types:
GeometricPrimitive-GeometricPrimitive subtypes segment vs aabb
PointCloud-PointCloud
VolumeGrid-TriangleMesh
VolumeGrid-VolumeGrid
ConvexHull - anything else besides ConvexHull
See the comments of the distance_point function
- Return type
DistanceQueryResult
-
distance_ext
(other, settings)[source]¶ A customizable version of
Geometry3D.distance()
. The settings for the calculation can be customized with relErr, absErr, and upperBound, e.g., to break if the closest points are at least upperBound distance from one another.- Parameters
other (
Geometry3D
) –settings (
DistanceQuerySettings
) –
- Return type
DistanceQueryResult
-
rayCast
(s, d)[source]¶ Performs a ray cast.
- Parameters
s (
list of 3 floats
) –d (
list of 3 floats
) –
Supported types:
GeometricPrimitive
TriangleMesh
PointCloud (need a positive collision margin, or points need to have a ‘radius’ property assigned)
VolumeGrid
Group (groups of the aforementioned types)
- Returns
(hit,pt) where hit is true if the ray starting at s and pointing in direction d hits the geometry (given in world coordinates); pt is the hit point, in world coordinates.
- Return type
bool
-
rayCast_ext
(s, d)[source]¶ A more sophisticated ray cast.
- Parameters
s (
list of 3 floats
) –d (
list of 3 floats
) –
Supported types:
GeometricPrimitive
TriangleMesh
PointCloud (need a positive collision margin, or points need to have a ‘radius’ property assigned)
VolumeGrid
Group (groups of the aforementioned types)
- Returns
(hit_element,pt) where hit_element is >= 0 if ray starting at s and pointing in direction d hits the geometry (given in world coordinates).
hit_element is -1 if the object is not hit, otherwise it gives the index of the element (triangle, point, sub-object) that was hit. For geometric primitives, this will be 0.
pt is the hit point, in world coordinates.
- Return type
int
-
contacts
(other, padding1, padding2, maxContacts=0)[source]¶ Returns the set of contact points between this and other. This set is a discrete representation of the region of surface overlap, which is defined as all pairs of points within distance self.collisionMargin + other.collisionMargin + padding1 + padding2.
- Parameters
other (
Geometry3D
) –padding1 (float) –
padding2 (float) –
maxContacts (int, optional) – default value 0
For some geometry types (TriangleMesh-TriangleMesh, TriangleMesh-PointCloud, PointCloud-PointCloud) padding must be positive to get meaningful contact poitns and normals.
If maxContacts != 0 a clustering postprocessing step is performed.
Unsupported types:
GeometricPrimitive-GeometricPrimitive subtypes segment vs aabb
VolumeGrid-GeometricPrimitive any subtypes except point and sphere. also, the results are potentially inaccurate for non-convex VolumeGrids.
VolumeGrid-TriangleMesh
VolumeGrid-VolumeGrid
ConvexHull - anything
- Return type
ContactQueryResult
-
support
(dir)[source]¶ Calculates the furthest point on this geometry in the direction dir.
- Parameters
dir (
list of 3 floats
) –
Supported types:
ConvexHull
- Return type
None
-
slice
(R, t, tol)[source]¶ Calculates a 2D slice through the data. The slice is given by the local X-Y plane of a transform (R,T) with orientation R and translation t. The return Geometry’s data is in the local frame of (R,t), and (R,t) is set as its current transform.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –tol (float) –
The geometry’s current transform is respected.
O(N) time.
Supported types:
PointCloud. Needs tol > 0. A PointCloud is returned.
TriangleMesh. tol is ignored. A Group of GeometricPrimitives (segments) is returned.
- Return type
Geometry3D
-
roi
(query, bmin, bmax)[source]¶ Calculates a region of interest of the data for the bounding box [bmin,bmax]. The geometry’s current transform is respected.
- Parameters
query (str) –
bmin (
list of 3 floats
) –bmax (
list of 3 floats
) –
query can be “intersect”, “touching”, or “within”. If “intersect”, this tries to get a representation of the geometry intersecting the box. If “touching”, all elements touching the box are returned. If “within”, only elements entirely inside the box are returned.
query can also be prefaced with a ‘~’ which indicates that the ROI should be inverted, i.e. select everything that does NOT intersect with a box.
O(N) time.
Supported types:
PointCloud
TriangleMesh
- Return type
Geometry3D
-
property
world
¶ world : int
-
property
id
¶ id : int
-
property
geomPtr
¶ geomPtr : p.void
-
class
klampt.
Appearance
(*args)[source]¶ Bases:
object
Geometry appearance information. Supports vertex/edge/face rendering, per-vertex color, and basic color texture mapping. Uses OpenGL display lists, so repeated calls are fast.
For more complex appearances, you will need to call your own OpenGL calls.
Appearances can be either references to appearances of objects in the world, or they can be standalone.
Performance note: Avoid rebuilding buffers (e.g., via
refresh()
) as much as possible.C++ includes: appearance.h
__init__ ():
Appearance
__init__ (app):
Appearance
- Parameters
app (
Appearance
, optional) –
Attributes:
The membership flag
world : int
id : int
appearancePtr : p.void
Methods:
refresh
([deep])call this to rebuild internal buffers, e.g., when the OpenGL context changes.
clone
()Creates a standalone appearance from this appearance.
set
(arg2)Copies the appearance of the argument into this appearance.
Returns true if this is a standalone appearance.
free
()Frees the data associated with this appearance, if standalone.
setDraw
(*args)Turns on/off visibility of the object or a feature.
getDraw
(*args)Returns whether this object or feature is visible.
setColor
(*args)Sets color of the object or a feature.
getColor
(*args)Gets color of the object or a feature.
setColors
(feature, np_array2)Sets per-element color for elements of the given feature type.
setShininess
(shininess[, strength])Sets the specular highlight shininess and strength.
Retrieves the specular highlight shininess.
setElementColor
(feature, element, r, g, b[, a])Sets the per-element color for the given feature.
getElementColor
(feature, element)Gets the per-element color for the given feature.
setTexture1D_b
(format, np_array)Sets a 1D texture of the given width.
setTexture1D_i
(format, np_array, m)Sets a 1D texture of the given width.
setTexture1D_channels
(format, np_array2)Sets a 1D texture of the given width, given a 2D array of channels.
setTexture2D_b
(format, np_array2[, topdown])Sets a 2D texture of the given width/height.
setTexture2D_i
(format, np_array2[, topdown])Sets a 2D texture of the given width/height.
setTexture2D_channels
(format, np_array3[, …])Sets a 2D texture of the given width/height from a 3D array of channels.
setTexcoords1D
(np_array)Sets per-vertex texture coordinates for a 1D texture.
setTexcoords2D
(np_array2)Sets per-vertex texture coordinates for a 2D texture.
setTexgen
(np_array2[, worldcoordinates])Sets the texture generation.
setTexWrap
(wrap)Sets whether textures are to wrap (default true)
setPointSize
(size)For point clouds, sets the point size.
setCreaseAngle
(creaseAngleRads)For meshes, sets the crease angle.
setSilhouette
(radius[, r, g, b, a])For meshes sets a silhouette radius and color.
drawGL
(*args)Draws the given geometry with this appearance.
drawWorldGL
(geom)Draws the given geometry with this appearance.
setTexture1D
(format, array)Sets a 1D texture.
setTexture2D
(format, array)Sets a 2D texture.
setTexcoords
(array)Sets texture coordinates for the mesh.
-
property
thisown
¶ The membership flag
-
ALL
= 0¶
-
VERTICES
= 1¶
-
EDGES
= 2¶
-
FACES
= 3¶
-
EMISSIVE
= 4¶
-
SPECULAR
= 5¶
-
refresh
(deep=True)[source]¶ call this to rebuild internal buffers, e.g., when the OpenGL context changes. If deep=True, the entire data structure will be revised. Use this for streaming data, for example.
- Parameters
deep (bool, optional) – default value True
- Return type
None
-
set
(arg2)[source]¶ Copies the appearance of the argument into this appearance.
- Parameters
arg2 (
Appearance
) –- Return type
None
-
setDraw
(*args)[source]¶ Turns on/off visibility of the object or a feature.
setDraw (draw)
setDraw (feature,draw)
- Parameters
draw (bool) –
feature (int, optional) –
If one argument is given, turns the object visibility on or off
If two arguments are given, turns the feature (first int argument) visibility on or off. feature can be ALL, VERTICES, EDGES, or FACES.
- Return type
None
-
getDraw
(*args)[source]¶ Returns whether this object or feature is visible.
getDraw (): bool
getDraw (feature): bool
- Parameters
feature (int, optional) –
- Returns
- Return type
bool
If no arguments are given, returns whether the object is visible.
If one int argument is given, returns whether the given feature is visible. feature can be ALL, VERTICES, EDGES, or FACES.
- Return type
bool
-
setColor
(*args)[source]¶ Sets color of the object or a feature.
setColor (r,g,b,a=1)
setColor (feature,r,g,b,a)
- Parameters
r (float) –
g (float) –
b (float) –
a (float) – default value 1
feature (int, optional) –
If 3 or 4 arguments are given, changes the object color.
If 5 arguments are given, changes the color of the given feature. feature can be ALL, VERTICES, EDGES, FACES, EMISSIVE, or SPECULAR.
- Return type
None
-
getColor
(*args)[source]¶ Gets color of the object or a feature.
getColor ()
getColor (feature)
- Parameters
feature (int, optional) –
If 0 arguments are given, retrieves the main object color.
If 1 arguments are given, returns the color of the given feature. feature. feature can be ALL, VERTICES, EDGES, FACES, EMISSIVE, or SPECULAR.
- Return type
None
-
setColors
(feature, np_array2)[source]¶ Sets per-element color for elements of the given feature type. Must be an mxn array. m is the number of features of that type, and n is either 3 or 4.
- Parameters
feature (int) –
np_array2 (
2D Numpy array of np.float32
) –
If n == 4, they are assumed to be rgba values, and
If n == 3, each row is an rgb value.
Only supports feature=VERTICES and feature=FACES
- Return type
None
-
setShininess
(shininess, strength=- 1)[source]¶ Sets the specular highlight shininess and strength. To turn off, use setShininess(0). The specular strength can be set via the second argument. setShininess(20,0.1). Note that this changes the specular color.
- Parameters
shininess (float) –
strength (float, optional) – default value -1
- Return type
None
-
setElementColor
(feature, element, r, g, b, a=1)[source]¶ Sets the per-element color for the given feature.
- Parameters
feature (int) –
element (int) –
r (float) –
g (float) –
b (float) –
a (float, optional) – default value 1
- Return type
None
-
getElementColor
(feature, element)[source]¶ Gets the per-element color for the given feature.
- Parameters
feature (int) –
element (int) –
- Return type
None
-
setTexture1D_b
(format, np_array)[source]¶ Sets a 1D texture of the given width. Valid format strings are.
- Parameters
format (str) –
np_array (
unsigned char *
) –
“”: turn off texture mapping
l8: unsigned byte grayscale colors
- Return type
None
-
setTexture1D_i
(format, np_array, m)[source]¶ Sets a 1D texture of the given width. Valid format strings are.
- Parameters
format (str) –
np_array (
unsigned int *
) –m (int) –
“”: turn off texture mapping
rgba8: unsigned byte RGBA colors with red in the 1st byte and alpha in the 4th
bgra8: unsigned byte RGBA colors with blue in the 1st byte and alpha in the 4th
- Return type
None
-
setTexture1D_channels
(format, np_array2)[source]¶ Sets a 1D texture of the given width, given a 2D array of channels. Valid format strings are.
- Parameters
format (str) –
np_array2 (
unsigned char *
) –
“”: turn off texture mapping
rgb8: unsigned byte RGB colors with red in the 1st column, green in the 2nd, blue in the 3rd
bgr8: unsigned byte RGB colors with blue in the 1st column, green in the 2nd, green in the 3rd
rgba8: unsigned byte RGBA colors with red in the 1st column and alpha in the 4th
bgra8: unsigned byte RGBA colors with blue in the 1st column and alpha in the 4th
l8: unsigned byte grayscale colors, one channel
- Return type
None
-
setTexture2D_b
(format, np_array2, topdown=True)[source]¶ Sets a 2D texture of the given width/height. See
setTexture1D_b()
for valid format strings.- Parameters
format (str) –
np_array2 (
unsigned char *
) –topdown (bool, optional) – default value True
The array is given in top to bottom order if topdown==True. Otherwise, it is given in order bottom to top.
- Return type
None
-
setTexture2D_i
(format, np_array2, topdown=True)[source]¶ Sets a 2D texture of the given width/height. See
setTexture1D_i()
for valid format strings.- Parameters
format (str) –
np_array2 (
unsigned int *
) –topdown (bool, optional) – default value True
The array is given in top to bottom order if topdown==True. Otherwise, it is given in order bottom to top.
- Return type
None
-
setTexture2D_channels
(format, np_array3, topdown=True)[source]¶ Sets a 2D texture of the given width/height from a 3D array of channels. See
setTexture1D_channels()
for valid format strings.- Parameters
format (str) –
np_array3 (
unsigned char *
) –topdown (bool, optional) – default value True
The array is given in top to bottom order if topdown==True. Otherwise, it is given in order bottom to top.
- Return type
None
-
setTexcoords1D
(np_array)[source]¶ Sets per-vertex texture coordinates for a 1D texture.
- Parameters
np_array (
1D Numpy array of floats
) –
You may also set uvs to be empty, which turns off texture mapping altogether.
- Return type
None
-
setTexcoords2D
(np_array2)[source]¶ Sets per-vertex texture coordinates for a 2D texture. uvs is an array of shape (nx2) containing U-V coordinates [[u1, v1], [u2, v2], …, [un, vn]].
- Parameters
np_array2 (
2D Numpy array of floats
) –
You may also set uvs to be empty, which turns off texture mapping altogether.
- Return type
None
-
setTexgen
(np_array2, worldcoordinates=False)[source]¶ Sets the texture generation. The array must be size m x 4, with m in the range 0,…,4. If worldcoordinates=true, the texture generation is performed in world coordinates rather than object coordinates.
- Parameters
np_array2 (
2D Numpy array of floats
) –worldcoordinates (bool, optional) – default value False
- Return type
None
-
setTexWrap
(wrap)[source]¶ Sets whether textures are to wrap (default true)
- Parameters
wrap (bool) –
- Return type
None
-
setPointSize
(size)[source]¶ For point clouds, sets the point size.
- Parameters
size (float) –
- Return type
None
-
setCreaseAngle
(creaseAngleRads)[source]¶ For meshes, sets the crease angle. Set to 0 to disable smoothing.
- Parameters
creaseAngleRads (float) –
- Return type
None
-
setSilhouette
(radius, r=0, g=0, b=0, a=1)[source]¶ For meshes sets a silhouette radius and color. Set the radius to 0 to disable silhouette drawing.
- Parameters
radius (float) –
r (float, optional) – default value 0
g (float, optional) – default value 0
b (float, optional) – default value 0
a (float, optional) – default value 1
- Return type
None
-
drawGL
(*args)[source]¶ Draws the given geometry with this appearance. NOTE: for best performance, an appearance should only be drawn with a single geometry. Otherwise, the OpenGL display lists will be completely recreated.
drawGL ()
drawGL (geom)
- Parameters
geom (
Geometry3D
, optional) –
Note that the geometry’s current transform is NOT respected, and this only draws the geometry in its local transform.
- Return type
None
-
drawWorldGL
(geom)[source]¶ Draws the given geometry with this appearance. NOTE: for best performance, an appearance should only be drawn with a single geometry. Otherwise, the OpenGL display lists will be completely recreated.
- Parameters
geom (
Geometry3D
) –
Differs from drawGL in that the geometry’s current transform is applied before drawing.
- Return type
None
-
property
world
¶ world : int
-
property
id
¶ id : int
-
property
appearancePtr
¶ appearancePtr : p.void
-
setTexture1D
(format, array)[source]¶ Sets a 1D texture.
- Parameters
format (str) –
describes how the array is specified. Valid values include:
’‘: turn off texture mapping
- ’rgb8’: unsigned byte RGB colors with red in the 1st
column, green in the 2nd, blue in the 3rd.
- ’bgr8’: unsigned byte RGB colors with blue in the 1st
column, green in the 2nd, green in the 3rd
- ’rgba8’: unsigned byte RGBA colors with red in the 1st
column and alpha in the 4th
- ’bgra8’: unsigned byte RGBA colors with blue in the 1st
column and alpha in the 4th
’l8’: unsigned byte grayscale colors, one channel
array (np.ndarray) –
a 1D or 2D array, of size w or w x c where w is the width and c is the number of channels.
Datatype is of type uint8, or for rgba8 / bgra8, can also be packed into uint32 elements. In this case, the pixel format is 0xaarrggbb or 0xaabbggrr, respectively.
-
setTexture2D
(format, array)[source]¶ Sets a 2D texture.
- Parameters
format (str) –
describes how the array is specified. Valid values include:
’‘: turn off texture mapping
- ’rgb8’: unsigned byte RGB colors with red in the 1st
column, green in the 2nd, blue in the 3rd.
- ’bgr8’: unsigned byte RGB colors with blue in the 1st
column, green in the 2nd, green in the 3rd
- ’rgba8’: unsigned byte RGBA colors with red in the 1st
column and alpha in the 4th
- ’bgra8’: unsigned byte RGBA colors with blue in the 1st
column and alpha in the 4th
’l8’: unsigned byte grayscale colors, one channel
array (np.ndarray) –
a 2D or 3D array, of size h x w or h x w x c where h is the height, w is the width, and c is the number of channels.
Datatype is of type uint8, or for rgba8 / bgra8, can also be packed into uint32 elements. In this case, the pixel format is 0xaarrggbb or 0xaabbggrr, respectively.
-
class
klampt.
DistanceQuerySettings
[source]¶ Bases:
object
Configures the _ext distance queries of
Geometry3D
.The calculated result satisfies \(Dcalc \leq D(1+relErr) + absErr\) unless \(D \geq upperBound\), in which case Dcalc=upperBound may be returned.
-
relErr
¶ Allows a relative error in the reported distance to speed up computation. Default 0.
- Type
float, optional
-
absErr
¶ Allows an absolute error in the reported distance to speed up computation. Default 0.
- Type
float, optional
-
upperBound
¶ The calculation may branch if D exceeds this bound.
- Type
float, optional
C++ includes: geometry.h
Attributes:
The membership flag
relErr : double
absErr : double
upperBound : double
-
property
thisown
¶ The membership flag
-
property
relErr
¶ relErr : double
-
property
absErr
¶ absErr : double
-
property
upperBound
¶ upperBound : double
-
-
class
klampt.
DistanceQueryResult
[source]¶ Bases:
object
The result from a “fancy” distance query of
Geometry3D
.-
d
¶ The calculated distance, with negative values indicating penetration. Can also be upperBound if the branch was hit.
- Type
float
-
hasClosestPoints
¶ If true, the closest point information is given in cp0 and cp1, and elem1 and elem2
- Type
bool
-
hasGradients
¶ f true, distance gradient information is given in grad0 and grad1.
- Type
bool
-
cp1, cp2
closest points on self vs other, both given in world coordinates
- Type
list of 3 floats, optional
-
grad1, grad2
the gradients of the objects’ signed distance fields at the closest points. Given in world coordinates.
I.e., to move object1 to touch object2, move it in direction grad1 by distance -d. Note that grad2 is always -grad1.
- Type
list of 3 floats, optional
-
elems1, elems2
for compound objects, these are the element indices corresponding to the closest points.
- Type
int
C++ includes: geometry.h
Attributes:
The membership flag
d : double
hasClosestPoints : bool
hasGradients : bool
cp1 : std::vector<(double,std::allocator<(double)>)>
cp2 : std::vector<(double,std::allocator<(double)>)>
grad1 : std::vector<(double,std::allocator<(double)>)>
grad2 : std::vector<(double,std::allocator<(double)>)>
elem1 : int
elem2 : int
-
property
thisown
¶ The membership flag
-
property
d
¶ d : double
-
property
hasClosestPoints
¶ hasClosestPoints : bool
-
property
hasGradients
¶ hasGradients : bool
-
property
cp1
¶ cp1 : std::vector<(double,std::allocator<(double)>)>
-
property
cp2
¶ cp2 : std::vector<(double,std::allocator<(double)>)>
-
property
grad1
¶ grad1 : std::vector<(double,std::allocator<(double)>)>
-
property
grad2
¶ grad2 : std::vector<(double,std::allocator<(double)>)>
-
property
elem1
¶ elem1 : int
-
property
elem2
¶ elem2 : int
-
-
class
klampt.
ContactQueryResult
[source]¶ Bases:
object
The result from a contact query of
Geometry3D
. The number of contacts n is variable.-
depths
¶ penetration depths for each contact point. The depth is measured with respect to the padded geometry, and must be nonnegative. A value of 0 indicates that depth cannot be determined accurately.
- Type
list of n floats
-
points1, points2
contact points on self vs other, The top level list has n entries, and each entry is a 3-list expressed in world coordinates. If an object is padded, these points are on the surface of the padded geometry.
- Type
list of n lists of floats
-
normals
¶ the outward-facing contact normal from this to other at each contact point, given in world coordinates. Each entry is a 3-list, and can be a unit vector, or [0,0,0] if the the normal cannot be computed properly.
- Type
list of n lists of floats
-
elems1, elems2
for compound objects, these are the element indices corresponding to each contact.
- Type
list of n ints
C++ includes: geometry.h
Attributes:
The membership flag
depths : std::vector<(double,std::allocator<(double)>)>
points1 : std::vector<(std::vector<(double,std::allocator<(double)>)>,std::allocator<(std::vector<(double,std::allocator<(double)>)>)>)>
points2 : std::vector<(std::vector<(double,std::allocator<(double)>)>,std::allocator<(std::vector<(double,std::allocator<(double)>)>)>)>
normals : std::vector<(std::vector<(double,std::allocator<(double)>)>,std::allocator<(std::vector<(double,std::allocator<(double)>)>)>)>
elems1 : std::vector<(int,std::allocator<(int)>)>
elems2 : std::vector<(int,std::allocator<(int)>)>
-
property
thisown
¶ The membership flag
-
property
depths
¶ depths : std::vector<(double,std::allocator<(double)>)>
-
property
points1
¶ points1 : std::vector<(std::vector<(double,std::allocator<(double)>)>,std::allocator<(std::vector<(double,std::allocator<(double)>)>)>)>
-
property
points2
¶ points2 : std::vector<(std::vector<(double,std::allocator<(double)>)>,std::allocator<(std::vector<(double,std::allocator<(double)>)>)>)>
-
property
normals
¶ normals : std::vector<(std::vector<(double,std::allocator<(double)>)>,std::allocator<(std::vector<(double,std::allocator<(double)>)>)>)>
-
property
elems1
¶ elems1 : std::vector<(int,std::allocator<(int)>)>
-
property
elems2
¶ elems2 : std::vector<(int,std::allocator<(int)>)>
-
-
class
klampt.
TriangleMesh
[source]¶ Bases:
object
A 3D indexed triangle mesh class.
-
vertices
¶ a list of vertices, given as a flattened coordinate list [x1, y1, z1, x2, y2, …]
- Type
SWIG vector of floats
-
indices
¶ a list of triangle vertices given as indices into the vertices list, i.e., [a1,b1,c2, a2,b2,c2, …]
- Type
SWIG vector of ints
Note: because the bindings are generated by SWIG, you can access the indices / vertices members via some automatically generated accessors / modifiers. In particular len(), append(), and indexing via [] are useful. Some other methods like resize() are also provided. However, you CANNOT set these items via assignment.
Examples:
m = TriangleMesh() m.vertices.append(0) m.vertices.append(0) m.vertices.append(0) print(len(m.vertices)) #prints 3 m.vertices = [0,0,0] #this is an error m.vertices += [1,2,3] #this is also an error
To get all vertices as a numpy array:
verts = m.getVertices()
To get all indices as a numpy array:
inds = m.getIndices()
C++ includes: geometry.h
Attributes:
The membership flag
indices : std::vector<(int,std::allocator<(int)>)>
vertices : std::vector<(double,std::allocator<(double)>)>
Methods:
Retrieves an array view of the vertices.
setVertices
(np_array2)Sets all vertices to the given nx3 Numpy array.
Retrieves an array view of the triangle indices.
setIndices
(np_array2)Sets all indices to the given mx3 Numpy array.
translate
(t)Translates all the vertices by v=v+t.
transform
(R, t)Transforms all the vertices by the rigid transform v=R*v+t.
-
property
thisown
¶ The membership flag
-
getVertices
()[source]¶ Retrieves an array view of the vertices.
- Returns
an nx3 Numpy array. Setting elements of this array will change the vertices.
- Return type
ndarray
- Return type
None
-
setVertices
(np_array2)[source]¶ Sets all vertices to the given nx3 Numpy array.
- Parameters
np_array2 (
2D Numpy array of floats
) –- Return type
None
-
getIndices
()[source]¶ Retrieves an array view of the triangle indices.
- Returns
an mx3 Numpy array of int32 type. Setting elements of this array will change the indices.
- Return type
ndarray
- Return type
None
-
setIndices
(np_array2)[source]¶ Sets all indices to the given mx3 Numpy array.
- Parameters
np_array2 (
2D Numpy array of ints
) –- Return type
None
-
translate
(t)[source]¶ Translates all the vertices by v=v+t.
- Parameters
t (
list of 3 floats
) –- Return type
None
-
transform
(R, t)[source]¶ Transforms all the vertices by the rigid transform v=R*v+t.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
property
indices
¶ indices : std::vector<(int,std::allocator<(int)>)>
-
property
vertices
¶ vertices : std::vector<(double,std::allocator<(double)>)>
-
-
class
klampt.
PointCloud
[source]¶ Bases:
object
A 3D point cloud class.
-
vertices
¶ a list of vertices, given as a list [x1, y1, z1, x2, y2, … zn]
- Type
SWIG vector of floats
-
properties
¶ a list of vertex properties, given as a list [p11, p21, …, pk1, p12, p22, …, pk2, …, p1n, p2n, …, pkn] where each vertex has k properties. The name of each property is given by the
propertyNames
member.- Type
SWIG vector of floats
-
propertyNames
¶ a list of the names of each property
- Type
SWIG vector of strs
-
settings
¶ a general property map .
- Type
SWIG map of strs to strs
Note
Because the bindings are generated by SWIG, you can access the members via some automatically generated accessors / modifiers. In particular len(), append(), and indexing via [] are useful. Some other methods like resize() and iterators are also provided. However, you CANNOT set these items via assignment, i.e.,
pc.vertices = [0,0,0]
is not allowed.Property names are usually lowercase but follow PCL naming convention, and often include:
normal_x, normal_y, normal_z: the outward normal
rgb, rgba: integer encoding of RGB (24 bit int, format 0xrrggbb) or RGBA color (32 bit int, format 0xaarrggbb)
opacity: opacity, in range [0,1]
c: opacity, in range [0,255]
r,g,b,a: color channels, in range [0,1]
u,v: texture coordinate
radius: treats the point cloud as a collection of balls
Settings are usually lowercase but follow PCL naming convention, and often include:
version: version of the PCL file, typically “0.7”
id: integer id
width: the width (in pixels) of a structured point cloud
height: the height (in pixels) of a structured point cloud
viewpoint: Camera position and orientation in the form ox oy oz qw qx qy qz, with (ox,oy,oz) the focal point and (qw,qx,qy,qz) the quaternion representation of the orientation (canonical representation, with X right, Y down, Z forward).
Examples:
pc = PointCloud() pc.propertyNames.append('rgb') #add 1 point with coordinates (0,0,0) and color #000000 (black) pc.vertices.append(0) pc.vertices.append(0) pc.vertices.append(0) pc.properties.append(0) print(len(pc.vertices)) #prints 3 print(pc.numPoints()) #prints 1 #add another point with coordinates (1,2,3) pc.addPoint([1,2,3]) #this prints 2 print(pc.numPoints() ) print(pc.getPoints()) #prints [[0,0,0],[1,2,3]] #this prints 2, because there is 1 property category x 2 points print(pc.properties.size()) assert pc.propertyNames.size() == pc.getAllProperties().shape[1] #this prints 0; this is the default value added when addPoint is called print(pc.getProperty(1,0) )
To get all points as an n x 3 numpy array:
points = pc.getPoints()
To get all properties as a n x k numpy array:
properties = pc.getAllProperties()
C++ includes: geometry.h
Attributes:
The membership flag
vertices : std::vector<(double,std::allocator<(double)>)>
propertyNames : std::vector<(std::string,std::allocator<(std::string)>)>
properties : std::vector<(double,std::allocator<(double)>)>
settings : std::map<(std::string,std::string,std::less<(std::string)>,std::allocator<(std::pair<(q(const).std::string,std::string)>)>)>
Methods:
Returns the number of points.
Returns the number of properties.
Returns a view of the points.
setPoints
(np_array2)Sets all the points to the given nx3 Numpy array.
setPointsAndProperties
(np_array2)Sets all the points and m properties from the given n x (3+m) array.
addPoint
(p)Adds a point.
setPoint
(index, p)Sets the position of the point at the given index to p.
getPoint
(index)Returns the position of the point at the given index.
addProperty
(*args)Adds a new property with name pname, and sets values for this property to the given length-n array.
setProperties
(*args)Sets property pindex of all points to the given length-n array.
setProperty
(*args)Sets the property named pname of point index to the given value.
getProperty
(*args)Returns the property named pname of point index.
getProperties
(*args)Returns property named pindex of all points as an array.
Returns all the properties of all points as an array view.
translate
(t)Translates all the points by v=v+t.
transform
(R, t)Transforms all the points by the rigid transform v=R*v+t.
join
(pc)Adds the given point cloud to this one.
setSetting
(key, value)Sets the given setting.
getSetting
(key)Returns the given setting.
setDepthImage_d
(intrinsics, np_array2, …)Sets a structured point cloud from a depth image.
setDepthImage_f
(intrinsics, np_depth2, …)Sets a structured point cloud from a depth image.
setDepthImage_s
(intrinsics, np_depth2, …)Sets a structured point cloud from a depth image.
setRGBDImages_i_d
(intrinsics, np_array2, …)Sets a structured point cloud from an RGBD (color,depth) image pair.
setRGBDImages_i_f
(intrinsics, np_array2, …)Sets a structured point cloud from an RGBD (color,depth) image pair.
setRGBDImages_i_s
(intrinsics, np_array2, …)Sets a structured point cloud from an RGBD (color,depth) image pair.
setRGBDImages_b_d
(intrinsics, np_array3, …)Sets a structured point cloud from an RGBD (color,depth) image pair.
setRGBDImages_b_f
(intrinsics, np_array3, …)Sets a structured point cloud from an RGBD (color,depth) image pair.
setRGBDImages_b_s
(intrinsics, np_array3, …)Sets a structured point cloud from an RGBD (color,depth) image pair.
setDepthImage
(intrinsics, depth[, depth_scale])Sets a structured point cloud from a depth image.
setRGBDImages
(intrinsics, color, depth[, …])Sets a structured point cloud from a color,depth image pair.
-
property
thisown
¶ The membership flag
-
getPoints
()[source]¶ Returns a view of the points.
- Returns
an nx3 Numpy array. Setting elements of this array will change the points.
- Return type
ndarray
- Return type
None
-
setPoints
(np_array2)[source]¶ Sets all the points to the given nx3 Numpy array.
- Parameters
np_array2 (
2D Numpy array of floats
) –- Return type
None
-
setPointsAndProperties
(np_array2)[source]¶ Sets all the points and m properties from the given n x (3+m) array.
- Parameters
np_array2 (
2D Numpy array of floats
) –- Return type
None
-
addPoint
(p)[source]¶ Adds a point. Sets all its properties to 0.
- Parameters
p (
list of 3 floats
) –
Returns the point’s index.
- Return type
int
-
setPoint
(index, p)[source]¶ Sets the position of the point at the given index to p.
- Parameters
index (int) –
p (
list of 3 floats
) –
- Return type
None
-
getPoint
(index)[source]¶ Returns the position of the point at the given index.
- Parameters
index (int) –
- Return type
None
-
addProperty
(*args)[source]¶ Adds a new property with name pname, and sets values for this property to the given length-n array.
addProperty (pname)
addProperty (pname,np_array)
- Parameters
pname (str) –
np_array (
1D Numpy array of floats
, optional) –
- Return type
None
-
setProperties
(*args)[source]¶ Sets property pindex of all points to the given length-n array.
setProperties (np_array2)
setProperties (pindex,np_array)
- Parameters
np_array2 (
2D Numpy array of floats
, optional) –pindex (int, optional) –
np_array (
1D Numpy array of floats
, optional) –
- Return type
None
-
setProperty
(*args)[source]¶ Sets the property named pname of point index to the given value.
setProperty (index,pindex,value)
setProperty (index,pname,value)
- Parameters
index (int) –
pindex (int, optional) –
value (float) –
pname (str, optional) –
- Return type
None
-
getProperty
(*args)[source]¶ Returns the property named pname of point index.
getProperty (index,pindex): float
getProperty (index,pname): float
- Parameters
index (int) –
pindex (int, optional) –
pname (str, optional) –
- Returns
- Return type
float
- Return type
float
-
getProperties
(*args)[source]¶ Returns property named pindex of all points as an array.
getProperties (pindex)
getProperties (pname)
- Parameters
pindex (int, optional) –
pname (str, optional) –
- Returns
an n-D Numpy array.
- Return type
ndarray
- Return type
None
-
getAllProperties
()[source]¶ Returns all the properties of all points as an array view.
- Returns
an nxk Numpy array. Setting elements of this array will change the vertices.
- Return type
ndarray
- Return type
None
-
translate
(t)[source]¶ Translates all the points by v=v+t.
- Parameters
t (
list of 3 floats
) –- Return type
None
-
transform
(R, t)[source]¶ Transforms all the points by the rigid transform v=R*v+t.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
join
(pc)[source]¶ Adds the given point cloud to this one. They must share the same properties or else an exception is raised.
- Parameters
pc (
PointCloud
) –- Return type
None
-
setSetting
(key, value)[source]¶ Sets the given setting.
- Parameters
key (str) –
value (str) –
- Return type
None
-
setDepthImage_d
(intrinsics, np_array2, depth_scale)[source]¶ Sets a structured point cloud from a depth image. [fx,fy,cx,cy] are the intrinsics parameters. The depth is given as a size hxw array, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_array2 (
2D Numpy array of floats
) –depth_scale (float) –
- Return type
None
-
setDepthImage_f
(intrinsics, np_depth2, depth_scale)[source]¶ Sets a structured point cloud from a depth image. [fx,fy,cx,cy] are the intrinsics parameters. The depth is given as a size hxw array, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_depth2 (
float *
) –depth_scale (float) –
- Return type
None
-
setDepthImage_s
(intrinsics, np_depth2, depth_scale)[source]¶ Sets a structured point cloud from a depth image. [fx,fy,cx,cy] are the intrinsics parameters. The depth is given as a size hxw array, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_depth2 (
unsigned short *
) –depth_scale (float) –
- Return type
None
-
setRGBDImages_i_d
(intrinsics, np_array2, np_depth2, depth_scale)[source]¶ Sets a structured point cloud from an RGBD (color,depth) image pair. [fx,fy,cx,cy] are the intrinsics parameters. The RGB colors are packed in 0xrrggbb order, size hxw, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_array2 (
unsigned int *
) –np_depth2 (
double *
) –depth_scale (float) –
- Return type
None
-
setRGBDImages_i_f
(intrinsics, np_array2, np_depth2, depth_scale)[source]¶ Sets a structured point cloud from an RGBD (color,depth) image pair. [fx,fy,cx,cy] are the intrinsics parameters. The RGB colors are packed in 0xrrggbb order, size hxw, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_array2 (
unsigned int *
) –np_depth2 (
float *
) –depth_scale (float) –
- Return type
None
-
setRGBDImages_i_s
(intrinsics, np_array2, np_depth2, depth_scale)[source]¶ Sets a structured point cloud from an RGBD (color,depth) image pair. [fx,fy,cx,cy] are the intrinsics parameters. The RGB colors are packed in 0xrrggbb order, size hxw, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_array2 (
unsigned int *
) –np_depth2 (
unsigned short *
) –depth_scale (float) –
- Return type
None
-
setRGBDImages_b_d
(intrinsics, np_array3, np_depth2, depth_scale)[source]¶ Sets a structured point cloud from an RGBD (color,depth) image pair. [fx,fy,cx,cy] are the intrinsics parameters. The RGB colors are packed in 0xrrggbb order, size hxw, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_array3 (
unsigned char *
) –np_depth2 (
double *
) –depth_scale (float) –
- Return type
None
-
setRGBDImages_b_f
(intrinsics, np_array3, np_depth2, depth_scale)[source]¶ Sets a structured point cloud from an RGBD (color,depth) image pair. [fx,fy,cx,cy] are the intrinsics parameters. The RGB colors are an h x w x 3 array, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_array3 (
unsigned char *
) –np_depth2 (
float *
) –depth_scale (float) –
- Return type
None
-
setRGBDImages_b_s
(intrinsics, np_array3, np_depth2, depth_scale)[source]¶ Sets a structured point cloud from an RGBD (color,depth) image pair. [fx,fy,cx,cy] are the intrinsics parameters. The RGB colors are an h x w x 3 array, top to bottom.
- Parameters
intrinsics (
double [4]
) –np_array3 (
unsigned char *
) –np_depth2 (
unsigned short *
) –depth_scale (float) –
- Return type
None
-
property
vertices
¶ vertices : std::vector<(double,std::allocator<(double)>)>
-
property
propertyNames
¶ propertyNames : std::vector<(std::string,std::allocator<(std::string)>)>
-
property
properties
¶ properties : std::vector<(double,std::allocator<(double)>)>
-
property
settings
¶ settings : std::map<(std::string,std::string,std::less<(std::string)>,std::allocator<(std::pair<(q(const).std::string,std::string)>)>)>
-
setDepthImage
(intrinsics, depth, depth_scale=1.0)[source]¶ Sets a structured point cloud from a depth image.
- Parameters
intrinsics (4-list) – the intrinsics parameters [fx,fy,cx,cy].
depth (np.ndarray) – the depth values, of size h x w. Should have dtype float, np.float32, or np.uint16 for best performance.
depth_scale (float, optional) – converts depth image values to real depth units.
-
setRGBDImages
(intrinsics, color, depth, depth_scale=1.0)[source]¶ Sets a structured point cloud from a color,depth image pair.
- Parameters
intrinsics (4-list) – the intrinsics parameters [fx,fy,cx,cy].
color (np.ndarray) – the color values, of size h x w or h x w x 3. In first case, must have dtype np.uint32 with r,g,b values packed in 0xrrggbb order. In second case, if dtype is np.uint8, min and max are [0,255]. If dtype is float or np.float32, min and max are [0,1].
depth (np.ndarray) – the depth values, of size h x w. Should have dtype float, np.float32, or np.uint16 for best performance.
depth_scale (float, optional) – converts depth image values to real depth units.
-
-
class
klampt.
GeometricPrimitive
[source]¶ Bases:
object
A geometric primitive. So far only points, spheres, segments, and AABBs can be constructed manually in the Python API.
-
type
¶ Can be “Point”, “Sphere”, “Segment”, “Triangle”, “Polygon”, “AABB”, and “Box”. Semi-supported types include “Ellipsoid”, and “Cylinder”.
- Type
str
-
properties
¶ a list of parameters defining the primitive. The interpretation is type-specific.
- Type
SWIG vector
C++ includes: geometry.h
Attributes:
The membership flag
type : std::string
properties : std::vector<(double,std::allocator<(double)>)>
Methods:
setPoint
(pt)- param pt
setSphere
(c, r)- param c
setSegment
(a, b)- param a
setTriangle
(a, b, c)- param a
setPolygon
(verts)- param verts
setAABB
(bmin, bmax)- param bmin
setBox
(ori, R, dims)- param ori
loadString
(str)- param str
- rtype
str
-
property
thisown
¶ The membership flag
-
setTriangle
(a, b, c)[source]¶ - Parameters
a (
list of 3 floats
) –b (
list of 3 floats
) –c (
list of 3 floats
) –
- Return type
None
-
setAABB
(bmin, bmax)[source]¶ - Parameters
bmin (
list of 3 floats
) –bmax (
list of 3 floats
) –
- Return type
None
-
setBox
(ori, R, dims)[source]¶ - Parameters
ori (
list of 3 floats
) –R (
list of 9 floats (so3 element)
) –dims (
list of 3 floats
) –
- Return type
None
-
property
type
¶ type : std::string
-
property
properties
¶ properties : std::vector<(double,std::allocator<(double)>)>
-
-
class
klampt.
ConvexHull
[source]¶ Bases:
object
Stores a set of points to be set into a ConvexHull type. Note: These may not actually be the vertices of the convex hull; the actual convex hull may be computed internally for some datatypes.
-
points
¶ a list of points, given as a flattened coordinate list [x1,y1,z1,x2,y2,…]
- Type
SWIG vector of floats
C++ includes: geometry.h
Attributes:
The membership flag
points : std::vector<(double,std::allocator<(double)>)>
Methods:
Returns the # of points.
Retrieves a view of the points.
setPoints
(np_array2)Sets all points to the given nx3 Numpy array.
addPoint
(pt)Adds a point.
getPoint
(index)Retrieves a point.
translate
(t)Translates all the vertices by v=v+t.
transform
(R, t)Transforms all the vertices by the rigid transform v=R*v+t.
-
property
thisown
¶ The membership flag
-
getPoints
()[source]¶ Retrieves a view of the points.
- Returns
an nx3 Numpy array. Setting elements of this array will change the points.
- Return type
ndarray
- Return type
None
-
setPoints
(np_array2)[source]¶ Sets all points to the given nx3 Numpy array.
- Parameters
np_array2 (
2D Numpy array of floats
) –- Return type
None
-
translate
(t)[source]¶ Translates all the vertices by v=v+t.
- Parameters
t (
list of 3 floats
) –- Return type
None
-
transform
(R, t)[source]¶ Transforms all the vertices by the rigid transform v=R*v+t.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
property
points
¶ points : std::vector<(double,std::allocator<(double)>)>
-
-
class
klampt.
VolumeGrid
[source]¶ Bases:
object
An axis-aligned volumetric grid, typically a signed distance transform with > 0 indicating outside and < 0 indicating inside. Can also store an occupancy grid with 1 indicating inside and 0 indicating outside.
In general, values are associated with cells rather than vertices. So, cell (i,j,k) is associated with a single value, and has size (w,d,h) = ((bmax[0]-bmin[0])/dims[0], (bmax[1]-bmin[1])/dims[1], (bmax[2]-bmin[2])/dims[2]). It ranges over the box [w*i,w*(i+1)) x [d*j,d*(j+1)) x [h*k,h*(k+1)).
For SDFs and TSDFs which assume values at vertices, the values are specified at the centers of cells. I.e., at (w*(i+1/2),d*(j+1/2),h*(k+1/2)).
-
bbox
¶ contains min and max bounds (xmin,ymin,zmin),(xmax,ymax,zmax)
- Type
SWIG vector of 6 doubles
-
dims
¶ size of grid in each of 3 dimensions
- Type
SWIG vector of of 3 ints
-
values
¶ contains a 3D array of
dims[0]*dims[1]*dims[1]
values.The cell index (i,j,k) is flattened to
i*dims[1]*dims[2] + j*dims[2] + k
.The array index i is associated to cell index
(i/(dims[1]*dims[2]), (i/dims[2]) % dims[1], i%dims[2])
- Type
SWIG vector of doubles
C++ includes: geometry.h
Attributes:
The membership flag
bbox : std::vector<(double,std::allocator<(double)>)>
dims : std::vector<(int,std::allocator<(int)>)>
Returns a 3D Numpy array view of the values.
Methods:
setBounds
(bmin, bmax)- param bmin
resize
(sx, sy, sz)- param sx
set
(*args)Sets a specific element of a cell.
get
(i, j, k)Gets a specific element of a cell.
shift
(dv)- param dv
Returns a 3D Numpy array view of the values.
setValues
(np_array3)Sets the values to a 3D numpy array.
-
property
thisown
¶ The membership flag
-
setBounds
(bmin, bmax)[source]¶ - Parameters
bmin (
list of 3 floats
) –bmax (
list of 3 floats
) –
- Return type
None
-
set
(*args)[source]¶ Sets a specific element of a cell.
set (value)
set (i,j,k,value)
- Parameters
value (float) –
i (int, optional) –
j (int, optional) –
k (int, optional) –
- Return type
None
-
get
(i, j, k)[source]¶ Gets a specific element of a cell.
- Parameters
i (int) –
j (int) –
k (int) –
- Return type
float
-
setValues
(np_array3)[source]¶ Sets the values to a 3D numpy array.
- Parameters
np_array3 (
3D Numpy array of floats
) –- Return type
None
-
property
bbox
¶ bbox : std::vector<(double,std::allocator<(double)>)>
-
property
dims
¶ dims : std::vector<(int,std::allocator<(int)>)>
-
property
values
¶ Returns a 3D Numpy array view of the values.
- Return type
None
-
-
class
klampt.
IKObjective
(*args)[source]¶ Bases:
object
A class defining an inverse kinematic target. Either a link on a robot can take on a fixed position/orientation in the world frame, or a relative position/orientation to another frame.
The positionScale and orientationScale attributes scale the solver’s residual vector. This affects whether the convergence tolerance is met, and also controls the emphasis on each objective / component when the objective cannot be reached. By default these are both 1.
C++ includes: robotik.h
With no arguments, constructs a blank IKObjective. Given an IKObjective, acts as a copy constructor.
__init__ ():
IKObjective
__init__ (arg2):
IKObjective
- Parameters
arg2 (
IKObjective
, optional) –
Attributes:
The membership flag
goal : IKGoal
positionScale : float
rotationScale : float
Methods:
copy
()Copy constructor.
link
()The index of the robot link that is constrained.
destLink
()The index of the destination link, or -1 if fixed to the world.
Returns: The number of position dimensions constrained (0-3)
Returns: The number of rotation dimensions constrained (0-3)
setFixedPoint
(link, plocal, pworld)Sets a fixed-point constraint.
setFixedPoints
(link, plocals, pworlds)Sets a multiple fixed-point constraint.
setFixedTransform
(link, R, t)Sets a fixed-transform constraint (R,t)
setRelativePoint
(link1, link2, p1, p2)Sets a fixed-point constraint relative to link2.
setRelativePoints
(link1, link2, p1s, p2s)Sets a multiple fixed-point constraint relative to link2.
setRelativeTransform
(link, linkTgt, R, t)Sets a fixed-transform constraint (R,t) relative to linkTgt.
setLinks
(link[, link2])Manual construction.
Deprecated: use setFreePosConstraint.
Manual: Sets a free position constraint.
setFixedPosConstraint
(tlocal, tworld)Manual: Sets a fixed position constraint.
setPlanarPosConstraint
(tlocal, nworld, oworld)Manual: Sets a planar position constraint nworld^T T(link)*tlocal + oworld = 0.
setLinearPosConstraint
(tlocal, sworld, dworld)Manual: Sets a linear position constraint T(link)*tlocal = sworld + u*dworld for some real value u.
Manual: Sets a free rotation constraint.
Manual: Sets a fixed rotation constraint.
setAxialRotConstraint
(alocal, aworld)Manual: Sets an axial rotation constraint.
Returns the local and global position of the position constraint.
For linear and planar constraints, returns the direction.
For fixed rotation constraints, returns the orientation.
For axis rotation constraints, returns the local and global axes.
For fixed-transform constraints, returns the transform (R,t)
transform
(R, t)Tranforms the target position/rotation of this IK constraint by transform (R,t)
transformLocal
(R, t)Tranforms the local position/rotation of this IK constraint by transform (R,t)
matchDestination
(R, t)Sets the destination coordinates of this constraint to fit the given target transform.
closestMatch
(R, t)Gets the transform T that’s closest to the transform (R,t) and that satisfies the IK goal’s constraints.
Returns a transformation (R,t) from link relative to link2, sampled at random from the space of transforms that satisfies the objective obj.
loadString
(str)Loads the objective from a Klamp’t-native formatted string.
Saves the objective to a Klamp’t-native formatted string.
-
property
thisown
¶ The membership flag
-
setFixedPoint
(link, plocal, pworld)[source]¶ Sets a fixed-point constraint.
- Parameters
link (int) –
plocal (
list of 3 floats
) –pworld (
list of 3 floats
) –
- Return type
None
-
setFixedPoints
(link, plocals, pworlds)[source]¶ Sets a multiple fixed-point constraint.
- Parameters
link (int) –
plocals (
object
) –pworlds (
object
) –
- Return type
None
-
setFixedTransform
(link, R, t)[source]¶ Sets a fixed-transform constraint (R,t)
- Parameters
link (int) –
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
setRelativePoint
(link1, link2, p1, p2)[source]¶ Sets a fixed-point constraint relative to link2.
- Parameters
link1 (int) –
link2 (int) –
p1 (
list of 3 floats
) –p2 (
list of 3 floats
) –
- Return type
None
-
setRelativePoints
(link1, link2, p1s, p2s)[source]¶ Sets a multiple fixed-point constraint relative to link2.
- Parameters
link1 (int) –
link2 (int) –
p1s (
object
) –p2s (
object
) –
- Return type
None
-
setRelativeTransform
(link, linkTgt, R, t)[source]¶ Sets a fixed-transform constraint (R,t) relative to linkTgt.
- Parameters
link (int) –
linkTgt (int) –
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
setLinks
(link, link2=- 1)[source]¶ Manual construction.
- Parameters
link (int) –
link2 (int, optional) – default value -1
- Return type
None
-
setFixedPosConstraint
(tlocal, tworld)[source]¶ Manual: Sets a fixed position constraint.
- Parameters
tlocal (
list of 3 floats
) –tworld (
list of 3 floats
) –
- Return type
None
-
setPlanarPosConstraint
(tlocal, nworld, oworld)[source]¶ Manual: Sets a planar position constraint nworld^T T(link)*tlocal + oworld = 0.
- Parameters
tlocal (
list of 3 floats
) –nworld (
list of 3 floats
) –oworld (float) –
- Return type
None
-
setLinearPosConstraint
(tlocal, sworld, dworld)[source]¶ Manual: Sets a linear position constraint T(link)*tlocal = sworld + u*dworld for some real value u.
- Parameters
tlocal (
list of 3 floats
) –sworld (
list of 3 floats
) –dworld (
list of 3 floats
) –
- Return type
None
-
setFixedRotConstraint
(R)[source]¶ Manual: Sets a fixed rotation constraint.
- Parameters
R (
list of 9 floats (so3 element)
) –- Return type
None
-
setAxialRotConstraint
(alocal, aworld)[source]¶ Manual: Sets an axial rotation constraint.
- Parameters
alocal (
list of 3 floats
) –aworld (
list of 3 floats
) –
- Return type
None
-
getPosition
()[source]¶ Returns the local and global position of the position constraint.
- Return type
None
-
getPositionDirection
()[source]¶ For linear and planar constraints, returns the direction.
- Return type
None
-
getRotationAxis
()[source]¶ For axis rotation constraints, returns the local and global axes.
- Return type
None
-
getTransform
()[source]¶ For fixed-transform constraints, returns the transform (R,t)
- Return type
None
-
transform
(R, t)[source]¶ Tranforms the target position/rotation of this IK constraint by transform (R,t)
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
transformLocal
(R, t)[source]¶ Tranforms the local position/rotation of this IK constraint by transform (R,t)
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
matchDestination
(R, t)[source]¶ Sets the destination coordinates of this constraint to fit the given target transform. In other words, if (R,t) is the current link transform, this sets the destination position / orientation so that this objective has zero error. The current position/rotation constraint types are kept.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
closestMatch
(R, t)[source]¶ Gets the transform T that’s closest to the transform (R,t) and that satisfies the IK goal’s constraints.
- Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
sampleTransform
()[source]¶ Returns a transformation (R,t) from link relative to link2, sampled at random from the space of transforms that satisfies the objective obj.
- Return type
None
-
loadString
(str)[source]¶ Loads the objective from a Klamp’t-native formatted string. For a more readable but verbose format, try the JSON IO routines
klampt.io.loader.to_json()
/klampt.io.loader.from_json()
- Parameters
str (str) –
- Return type
bool
-
saveString
()[source]¶ Saves the objective to a Klamp’t-native formatted string. For a more readable but verbose format, try the JSON IO routines
klampt.io.loader.to_json()
/klampt.io.loader.from_json()
- Return type
str
-
property
goal
¶ goal : IKGoal
-
property
positionScale
¶ positionScale : float
-
property
rotationScale
¶ rotationScale : float
-
class
klampt.
IKSolver
(*args)[source]¶ Bases:
object
An inverse kinematics solver based on the Newton-Raphson technique.
Typical calling pattern is:
s = IKSolver(robot) s.add(objective1) s.add(objective2) s.setMaxIters(100) s.setTolerance(1e-4) res = s.solve() if res: print("IK solution:",robot.getConfig(),"found in", s.lastSolveIters(),"iterations, residual",s.getResidual()) else: print("IK failed:",robot.getConfig(),"found in", s.lastSolveIters(),"iterations, residual",s.getResidual())
C++ includes: robotik.h
Initializes an IK solver. Given a RobotModel, an empty solver is created. Given an IK solver, acts as a copy constructor.
__init__ (robot):
IKSolver
__init__ (solver):
IKSolver
- Parameters
robot (
RobotModel
, optional) –solver (
IKSolver
, optional) –
Attributes:
The membership flag
robot : RobotModel
objectives : std::vector<(IKObjective,std::allocator<(IKObjective)>)>
secondary_objectives : std::vector<(IKObjective,std::allocator<(IKObjective)>)>
tol : double
maxIters : int
activeDofs : std::vector<(int,std::allocator<(int)>)>
useJointLimits : bool
qmin : std::vector<(double,std::allocator<(double)>)>
qmax : std::vector<(double,std::allocator<(double)>)>
biasConfig : std::vector<(double,std::allocator<(double)>)>
lastIters : int
Methods:
copy
()Copy constructor.
add
(objective)Adds a new simultaneous objective.
set
(i, objective)Assigns an existing objective added by add.
addSecondary
(objective)Adds a new objective to the secondary objectives list.
setSecondary
(i, objective)Assigns an existing objective added by addsecondary.
clear
()Clears objectives.
setMaxIters
(iters)Sets the max # of iterations (default 100)
Returns the max # of iterations.
setTolerance
(res)Sets the constraint solve tolerance (default 1e-3)
Returns the constraint solve tolerance.
setActiveDofs
(active)Sets the active degrees of freedom.
Returns the active degrees of freedom.
setJointLimits
(qmin, qmax)Sets limits on the robot’s configuration.
Returns the limits on the robot’s configuration (by default this is the robot’s joint limits.
setBiasConfig
(biasConfig)Biases the solver to approach a given configuration.
Returns the solvers’ bias configuration.
isSolved
()Returns True if the current configuration residual is less than tol.
Returns the vector describing the error of the objective at the current configuration.
Computes the matrix describing the instantaneous derivative of the objective with respect to the active Dofs.
Returns the vector describing the error of the secondary objective at the current configuration.
solve
()Tries to find a configuration that satifies all simultaneous objectives up to the desired tolerance.
minimize
(*args)Tries to find a configuration that satifies all simultaneous objectives up to the desired tolerance or minimizes the residual.
Returns the number of Newton-Raphson iterations used in the last solve() call or the number of Quasi-Newton iterations used in the last minimize() call.
Samples an initial random configuration.
-
property
thisown
¶ The membership flag
-
add
(objective)[source]¶ Adds a new simultaneous objective.
- Parameters
objective (
IKObjective
) –- Return type
None
-
set
(i, objective)[source]¶ Assigns an existing objective added by add.
- Parameters
i (int) –
objective (
IKObjective
) –
- Return type
None
-
addSecondary
(objective)[source]¶ Adds a new objective to the secondary objectives list.
- Parameters
objective (
IKObjective
) –- Return type
None
-
setSecondary
(i, objective)[source]¶ Assigns an existing objective added by addsecondary.
- Parameters
i (int) –
objective (
IKObjective
) –
- Return type
None
-
setMaxIters
(iters)[source]¶ Sets the max # of iterations (default 100)
- Parameters
iters (int) –
- Return type
None
-
setTolerance
(res)[source]¶ Sets the constraint solve tolerance (default 1e-3)
- Parameters
res (float) –
- Return type
None
-
setActiveDofs
(active)[source]¶ Sets the active degrees of freedom.
- Parameters
active (
list of int
) –- Return type
None
-
setJointLimits
(qmin, qmax)[source]¶ Sets limits on the robot’s configuration. If empty, this turns off joint limits.
- Parameters
qmin (
list of floats
) –qmax (
list of floats
) –
- Return type
None
-
getJointLimits
()[source]¶ Returns the limits on the robot’s configuration (by default this is the robot’s joint limits.
- Return type
None
-
setBiasConfig
(biasConfig)[source]¶ Biases the solver to approach a given configuration. Setting an empty vector clears the bias term.
- Parameters
biasConfig (
list of floats
) –- Return type
None
-
isSolved
()[source]¶ Returns True if the current configuration residual is less than tol.
- Return type
bool
-
getResidual
()[source]¶ Returns the vector describing the error of the objective at the current configuration.
- Return type
None
-
getJacobian
()[source]¶ Computes the matrix describing the instantaneous derivative of the objective with respect to the active Dofs.
- Return type
None
-
getSecondaryResidual
()[source]¶ Returns the vector describing the error of the secondary objective at the current configuration.
- Return type
None
-
solve
()[source]¶ Tries to find a configuration that satifies all simultaneous objectives up to the desired tolerance.
All of the primary and the secondary objectives are solved simultaneously.
- Returns
True if x converged.
- Return type
bool
-
minimize
(*args)[source]¶ Tries to find a configuration that satifies all simultaneous objectives up to the desired tolerance or minimizes the residual.
minimize (): bool
minimize (secondary_objective,secondary_objective_grad): bool
- Parameters
secondary_objective (
object
, optional) –secondary_objective_grad (
object
, optional) –
The relation to :func:solve is that solve uses a root-finding method that tries indirectly to minimize the residual, but it may stall out when the objectives are infeasible.
If secondary objectives are specified, this tries to minimize them once the primary objectives are satisfied, i.e., it will minimize on the solution manifold of the primary constraints.
There are two flavors of secondary objectives. If no arguments are given, then any constraints added via addSecondary will have their residuals minimized.
If the user provides a pair of functions (f,grad), then a custom objective is specified. Here, f(q) is the secondary objective to minimize and grad(q) its gradient. This will override the secondary objectives added via addSecondary. Specifically, q is a function of all robot DOFs, and grad(q) should return a list or tuple of length len(q)`.
Note
The minimization will occur only over the current active DOFs, which will include default active DOFs for secondary objectives.
Arguments: secondary_objective (callable): a function f(q)->float that should be minimized. secondary_objective_grad (callable): a function grad(q)->`sequence of length `len(q) giving the gradient of f at q.
- Returns
True if x converged on the primary objectives.
- Return type
bool
-
lastSolveIters
()[source]¶ Returns the number of Newton-Raphson iterations used in the last solve() call or the number of Quasi-Newton iterations used in the last minimize() call.
- Return type
int
-
sampleInitial
()[source]¶ Samples an initial random configuration. More initial configurations can be sampled in case the prior configs lead to local minima.
- Return type
None
-
property
robot
¶ robot : RobotModel
-
property
objectives
¶ objectives : std::vector<(IKObjective,std::allocator<(IKObjective)>)>
-
property
secondary_objectives
¶ secondary_objectives : std::vector<(IKObjective,std::allocator<(IKObjective)>)>
-
property
tol
¶ tol : double
-
property
maxIters
¶ maxIters : int
-
property
activeDofs
¶ activeDofs : std::vector<(int,std::allocator<(int)>)>
-
property
useJointLimits
¶ useJointLimits : bool
-
property
qmin
¶ qmin : std::vector<(double,std::allocator<(double)>)>
-
property
qmax
¶ qmax : std::vector<(double,std::allocator<(double)>)>
-
property
biasConfig
¶ biasConfig : std::vector<(double,std::allocator<(double)>)>
-
property
lastIters
¶ lastIters : int
-
class
klampt.
GeneralizedIKObjective
(*args)[source]¶ Bases:
object
An inverse kinematics target for matching points between two robots and/or objects.
The objects are chosen upon construction, so the following are valid:
GeneralizedIKObjective(a) is an objective for object a to be constrained relative to the environment.
GeneralizedIKObjective(a,b) is an objective for object a to be constrained relative to b. Here a and b can be links on any robot or rigid objects.
Once constructed, call setPoint, setPoints, or setTransform to specify the nature of the constraint.
C++ includes: robotik.h
__init__ (obj):
GeneralizedIKObjective
__init__ (link):
GeneralizedIKObjective
__init__ (link,link2):
GeneralizedIKObjective
__init__ (link,obj2):
GeneralizedIKObjective
__init__ (obj,link2):
GeneralizedIKObjective
__init__ (obj,obj2):
GeneralizedIKObjective
- Parameters
obj (
GeneralizedIKObjective
orRigidObjectModel
, optional) –link (
RobotModelLink
, optional) –link2 (
RobotModelLink
, optional) –obj2 (
RigidObjectModel
, optional) –
Attributes:
The membership flag
link1 : RobotModelLink
link2 : RobotModelLink
obj1 : RigidObjectModel
obj2 : RigidObjectModel
isObj1 : bool
isObj2 : bool
goal : IKGoal
Methods:
setPoint
(p1, p2)- param p1
setPoints
(p1s, p2s)- param p1s
setTransform
(R, t)- param R
Returns a transformation (R,t) from link relative to link2, sampled at random from the space of transforms that satisfies the objective obj.
-
property
thisown
¶ The membership flag
-
setPoint
(p1, p2)[source]¶ - Parameters
p1 (
list of 3 floats
) –p2 (
list of 3 floats
) –
- Return type
None
-
setTransform
(R, t)[source]¶ - Parameters
R (
list of 9 floats (so3 element)
) –t (
list of 3 floats
) –
- Return type
None
-
sampleTransform
()[source]¶ Returns a transformation (R,t) from link relative to link2, sampled at random from the space of transforms that satisfies the objective obj.
- Return type
None
-
property
link1
¶ link1 : RobotModelLink
-
property
link2
¶ link2 : RobotModelLink
-
property
obj1
¶ obj1 : RigidObjectModel
-
property
obj2
¶ obj2 : RigidObjectModel
-
property
isObj1
¶ isObj1 : bool
-
property
isObj2
¶ isObj2 : bool
-
property
goal
¶ goal : IKGoal
-
class
klampt.
GeneralizedIKSolver
(world)[source]¶ Bases:
object
An inverse kinematics solver between multiple robots and/or objects. NOT IMPLEMENTED YET.
C++ includes: robotik.h
- Parameters
world (
WorldModel
) –
Attributes:
The membership flag
world : WorldModel
objectives : std::vector<(GeneralizedIKObjective,std::allocator<(GeneralizedIKObjective)>)>
tol : double
maxIters : int
useJointLimits : bool
Methods:
add
(objective)Adds a new simultaneous objective.
setMaxIters
(iters)Sets the max # of iterations (default 100)
setTolerance
(res)Sets the constraint solve tolerance (default 1e-3)
Returns a vector describing the error of the objective.
Returns a matrix describing the instantaneous derivative of the objective with respect to the active parameters.
solve
()Tries to find a configuration that satifies all simultaneous objectives up to the desired tolerance.
Samples an initial random configuration.
-
property
thisown
¶ The membership flag
-
add
(objective)[source]¶ Adds a new simultaneous objective.
- Parameters
objective (
GeneralizedIKObjective
) –- Return type
None
-
setMaxIters
(iters)[source]¶ Sets the max # of iterations (default 100)
- Parameters
iters (int) –
- Return type
None
-
setTolerance
(res)[source]¶ Sets the constraint solve tolerance (default 1e-3)
- Parameters
res (float) –
- Return type
None
-
getJacobian
()[source]¶ Returns a matrix describing the instantaneous derivative of the objective with respect to the active parameters.
- Return type
None
-
solve
()[source]¶ Tries to find a configuration that satifies all simultaneous objectives up to the desired tolerance.
Returns: res,iters (pair of bool, int): res indicates whether x converged, and iters is the number of iterations used.
- Return type
object
-
property
world
¶ world : WorldModel
-
property
objectives
¶ objectives : std::vector<(GeneralizedIKObjective,std::allocator<(GeneralizedIKObjective)>)>
-
property
tol
¶ tol : double
-
property
maxIters
¶ maxIters : int
-
property
useJointLimits
¶ useJointLimits : bool
-
klampt.robotsim.
set_random_seed
(seed)[source]¶ Sets the random seed used by the motion planner.
- Parameters
seed (int) –
- Return type
None
-
klampt.robotsim.
com_equilibrium
(*args)[source]¶ Tests whether the given COM com is stable for the given contacts and the given external force fext.
com_equilibrium (contacts,m,n,fext,com):
object
com_equilibrium (contactPositions,frictionCones,fext,com):
object
The 2-argument version is a “fancy” version that allows more control over the constraint planes.
Args: contacts (list of 7-float lists or tuples): the list of contacts, each specified as a 7-list or tuple [x,y,z,nx,ny,nz,k], with:
(x,y,z): the contact position
(nx,ny,nz): the contact normal
k: the coefficient of friction (>= 0)
contactPositions (list of 3-float lists or tuples): the list of contact point positions. frictionCones (list of lists): Each item of this list specifies linear inequalities that must be met of the force at the corresponding contact point. The item must have length k*4 where k is an integer, and each inequality gives the entries (ax,ay,az,b) of a constraint ax*fx+ay*fy+az*fz <= b that limits the contact force (fx,fy,fz) at the i’th contact. Each of the k 4-tuples is laid out sequentially per-contact. fext (3-tuple or list): the external force vector. com (3-tuple or list, or None): the center of mass coordinates. If None, assumes that you want to test whether ANY COM may be in equilibrium for the given contacts.
- Returns
if com is given, and there are feasible equilibrium forces, this returns a list of 3 tuples giving equilibrium forces at each of the contacts. None is returned if no such forces exist.
If com = None, the result is True or False.
- Return type
bool, None, or list
- Return type
object
-
klampt.robotsim.
com_equilibrium_2d
(*args)[source]¶ Tests whether the given COM com is stable for the given contacts and the given external force fext.
com_equilibrium_2d (contacts,m,n,fext,com):
object
com_equilibrium_2d (contactPositions,frictionCones,fext,com):
object
The 2-argument version is a “fancy” version that allows more control over the constraint planes.
- Parameters
contacts (list of 4-float lists or tuples) –
the list of contacts, each specified as a 4-list or tuple [x,y,theta,k], with:
(x,y,z): the contact position
theta: is the normal angle (in radians, CCW to the x axis)
k: the coefficient of friction (>= 0)
contactPositions (list of 2-float lists or tuples) – the list of contact point positions.
frictionCones (list of lists) – The i’th element in this list has length k*3 (for some integer k), and gives the contact force constraints (ax,ay,b) where ax*fx+ay*fy <= b limits the contact force (fx,fy) at the i’th contact. Each of the k 3-tuples is laid out sequentially per-contact.
fext (2-tuple or list) – the external force vector.
com (2-tuple or list, or None) – the center of mass coordinates. If None, assumes that you want to test whether ANY COM may be in equilibrium for the given contacts.
- Returns
if com is given, and there are feasible equilibrium forces, this returns a list of 2-tuples giving equilibrium forces at each of the contacts. None is returned if no such forces exist.
If com = None, the result is True or False.
- Return type
bool, None, or list
- Return type
object
-
klampt.robotsim.
equilibrium_torques
(*args)[source]¶ Solves for the torques / forces that keep the robot balanced against gravity.
equilibrium_torques (robot,contacts,m,n,links,fext,norm=0):
object
equilibrium_torques (robot,contacts,m,n,links,fext,internalTorques,norm=0):
object
The problem being solved is
\(min_{t,f_1,...,f_N} \|t\|_p\)
\(s.t. t_{int} + G(q) = t + sum_{i=1}^N J_i(q)^T f_i\)
\(|t| \leq t_{max}\)
\(f_i \in FC_i\)
- Parameters
robot (RobotModel) – the robot, posed in its current configuration
contacts (ndarray) – an N x 7 array of contact points, each given as 7-lists [x,y,z,nx,ny,nz,kFriction]
links (list of N ints) – a list of the links on which those contact points lie
fext (list of 3 floats) – the external force (e.g., gravity)
norm (double) –
the torque norm to minimize.
If 0, minimizes the l-infinity norm (default)
If 1, minimizes the l-1 norm.
If 2, minimizes the l-2 norm (experimental, may not get good results).
internalTorques (list of robot.numLinks() floats, optional) –
allows you to solve for dynamic situations, e.g., with coriolis forces taken into account. These are added to the RHS of the torque balance equation. If not given, t_int is assumed to be zero.
To use dynamics, set the robot’s joint velocities dq, calculate then calculate the torques via robot.torquesFromAccel(ddq), and pass the result into internalTorques.
- Returns
a pair (torque,force) if a solution exists, giving valid joint torques t and frictional contact forces (f1,…,fn).
None is returned if no solution exists.
- Return type
pair of lists, optional
- Return type
object
-
klampt.robotsim.
force_closure
(*args)[source]¶ Returns true if the list of contact points has force closure.
force_closure (contacts,m,n): bool
force_closure (contactPositions,frictionCones): bool
- Returns
- Return type
bool
In the 1-argument version, each contact point is specified by a list of 7 floats, [x,y,z,nx,ny,nz,k] where (x,y,z) is the position, (nx,ny,nz) is the normal, and k is the coefficient of friction.
The 2-argument version is a “fancy” version that allows more control over the constraint planes.
- Parameters
contacts (list of 7-float lists or tuples) –
the list of contacts, each specified as a 7-list or tuple [x,y,z,nx,ny,nz,k], with:
(x,y,z): the contact position
(nx,ny,nz): the contact normal
k: the coefficient of friction (>= 0)
contactPositions (list of 3-float lists or tuples) – the list of contact point positions.
frictionCones (list of lists) – Each item of this list specifies linear inequalities that must be met of the force at the corresponding contact point. The item must have length k*4 where k is an integer, and each inequality gives the entries (ax,ay,az,b) of a constraint ax*fx+ay*fy+az*fz <= b that limits the contact force (fx,fy,fz) at the i’th contact. Each of the k 4-tuples is laid out sequentially per-contact.
- Return type
bool
-
klampt.robotsim.
force_closure_2d
(*args)[source]¶ Returns true if the list of 2D contact points has force closure.
force_closure_2d (contacts,m,n): bool
force_closure_2d (contactPositions,frictionCones): bool
- Returns
- Return type
bool
In the 1-argument version, each contact point is given by a list of 4 floats, [x,y,theta,k] where (x,y) is the position, theta is the normal angle, and k is the coefficient of friction
The 2-argument version is a “fancy” version that allows more control over the constraint planes.
- Parameters
contacts (list of 4-float lists or tuples) –
the list of contacts, each specified as a 4-list or tuple [x,y,theta,k], with:
(x,y): the contact position
theta: is the normal angle (in radians, CCW to the x axis)
k: the coefficient of friction (>= 0)
contactPositions (list of 2-float lists or tuples) – the list of contact point positions.
frictionCones (list of lists) – The i’th element in this list has length k*3 (for some integer k), and gives the contact force constraints (ax,ay,b) where ax*fx+ay*fy <= b limits the contact force (fx,fy) at the i’th contact. Each of the k 3-tuples is laid out sequentially per-contact.
- Return type
bool
-
klampt.robotsim.
set_friction_cone_approximation_edges
(numEdges)[source]¶ Globally sets the number of edges used in the friction cone approximation. The default value is 4.
- Parameters
numEdges (int) –
- Return type
None
-
klampt.robotsim.
support_polygon
(*args)[source]¶ Calculates the support polygon for a given set of contacts and a downward external force (0,0,-g).
support_polygon (contacts,m,n):
object
support_polygon (contactPositions,frictionCones):
object
In the 1-argument version, a contact point is given by a list of 7 floats, [x,y,z,nx,ny,nz,k] as usual. The 2-argument version is a “fancy” version that allows more control over the constraint planes.
- Parameters
contacts (list of 7-float lists or tuples) –
the list of contacts, each specified as a 7-list or tuple [x,y,z,nx,ny,nz,k], with:
(x,y,z): the contact position
(nx,ny,nz): the contact normal
k: the coefficient of friction (>= 0)
contactPositions (list of 3-float lists or tuples) – the list of contact point positions.
frictionCones (list of lists) – Each item of this list specifies linear inequalities that must be met of the force at the corresponding contact point. The item must have length k*4 where k is an integer, and each inequality gives the entries (ax,ay,az,b) of a constraint ax*fx+ay*fy+az*fz <= b that limits the contact force (fx,fy,fz) at the i’th contact. Each of the k 4-tuples is laid out sequentially per-contact.
- Returns
The sorted plane boundaries of the support polygon. The format of a plane is (nx,ny,ofs) where (nx,ny) are the outward facing normals, and ofs is the offset from 0. In other words to test stability of a com with x-y coordinates [x,y], you can test whether dot([nx,ny],[x,y]) <= ofs for all planes.
Hint: with numpy, you can do:
Ab = np.array(supportPolygon(args)) A=Ab[:,0:2] b=Ab[:,2] myComEquilibrium = lambda x: np.all(np.dot(A,x)<=b)
- Return type
list of 3-tuples
- Return type
object
-
klampt.robotsim.
support_polygon_2d
(*args)[source]¶ Calculates the support polygon (interval) for a given set of contacts and a downward external force (0,-g).
support_polygon_2d (contacts,m,n):
object
support_polygon_2d (contacts,frictionCones):
object
The 2-argument version is a “fancy” version that allows more control over the constraint planes.
- Parameters
contacts (list of 4-float lists or tuples) –
the list of contacts, each specified as a 4-list or tuple [x,y,theta,k], with:
(x,y,z): the contact position
theta: is the normal angle (in radians, CCW to the x axis)
k: the coefficient of friction (>= 0)
contactPositions (list of 2-float lists or tuples) – the list of contact point positions.
frictionCones (list of lists) – The i’th element in this list has length k*3 (for some integer k), and gives the contact force constraints (ax,ay,b) where ax*fx+ay*fy <= b limits the contact force (fx,fy) at the i’th contact. Each of the k 3-tuples is laid out sequentially per-contact.
- Returns
gives the min/max extents of the support polygon. If the support interval is empty, (inf,inf) is returned.
- Return type
2-tuple
- Return type
object
-
class
klampt.robotsim.
ObjectPoser
(object)[source]¶ - Parameters
object (
RigidObjectModel
) –
-
class
klampt.robotsim.
RobotPoser
(robot)[source]¶ - Parameters
robot (
RobotModel
) –