




Adaptive Time Stepping in Real-Time Motion Planning 9

Fig. 5: A Staübli TX90L manipulator is commanded in real time to move its end ef-
fector in a clockwise circle in a cluttered environment. The robot responds reactively
to the target’s motion. Along the upper semicircle, rapid replanning with a short
time step allows the target to be followed closely. When obstacles are encountered on
the lower semicircle, planning becomes more difficult. Adaptive time stepping gives
the planner sufficient time to enter and escape deep narrow passages. The current
plan is drawn in orange, and its destination configuration is drawn transparently.

3.5 Assisted Teleoperation Experiments on a 6DOF Manipulator

Replanning interleaves planning and execution, so motion appears more fluid
than a pre-planning approach. This is advantageous in human-robot inter-
action and assisted teleoperation applications where delays in the onset of
motion may be viewed as unnatural. We implemented a teleoperation system
for a dynamically simulated 6DOF Staübli TX90L manipulator that uses re-
planning for real-time obstacle avoidance in assisted control. The robot is able
to reject infeasible commands, follow commands closely while near obstacles,
and does not get stuck in local minima like potential field approaches.

In this system, an operator controls a 3D target point (for example, using a
joystick or a laser pointer), and the robot is instructed to reach the point using
its end effector. The robot’s state space consists of configuration × velocity,
and its acceleration and velocity are bounded. Its configuration are subject to
joint limit and collision constraints. The objective function for the planner is
an unpredictably time-varying function V (x, t) which measures the distance
from the end effector to the target point.

Our underlying planner is a unidirectional variant of the SBL motion plan-
ner [15] that is adapted to produce dynamically feasible paths. We made the
following adjustments to the basic algorithm:

• We extend the search tree by sampling extensions to stationary config-
urations sampled at random. The local planner constructs dynamically
feasible trajectories that are optimal in obstacle free environments (a sim-
ilar strategy was used in [5]). To do so, we use analytically computed
trajectories that are time-optimal under the assumption of box-bounds on
velocity and acceleration [6].



10 Kris Hauser

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

Desired
Destination
Actual

t = 0...7 t = 7...13 t = 13...20

Fig. 6: Traces of the end effector’s desired position (Desired), the position at the cur-
rent plan’s destination configuration (Destination), and actual position as executed
by the robot (Actual) for the experiment in Figure 5.

• For every randomly generated sample, we generate a second configuration
using an inverse kinematics solver in order to get closer to the target.

• SBL uses a lazy collision checking mechanism that improves planning time
by delaying edge feasibility checks, usually until a path to the goal is found.
We delay edge checks until the planner finds a path that improves C(y).

• To improve the fluidity of motion, we devote 20% of each time step to
trajectory smoothing. We used the shortcutting heuristic described in [6]
that repeatedly picks two random states on the trajectory, constructs a
time-optimal segment between them, and replaces the intermediate portion
of the trajectory if the segment is collision free.

The simulation environment is based on the Open Dynamics Engine rigid-
body simulation package, where the robot is modeled as a series of rigid links
controlled by a PID controller with feedforward gravity compensation and
torque limits. The simulation does perform collision detection, but in our
experiments the simulated robot did not collide with the environment.

We simulated a user commanding a target to follow a circular trajectory
that passes through the robot and obstacles (Figure 5). The circle has radius
0.8m and a period of 20 s. The upper semicircle is relatively unconstrained
and can be followed exactly. Targets along the lower semicircle are significantly
harder to reach; at several points they pass through obstacles, and at other
points they require the robot to execute contorted maneuvers through narrow
passages in the feasible space. Experiments show that replanning can reach a
large portion of the lower semicircle while tracking the upper semicircle nearly
perfectly (Figure 6).

4 Replanning in Unpredictable Environments

A conservative approach to uncertainty may be preferred in safety-critical
applications like transportation and medical robotics. This section presents
a real-time contingency planning algorithm that generates both optimistic



Adaptive Time Stepping in Real-Time Motion Planning 11

Fig. 7: Snapshots taken at half-second intervals from a pursuit-evasion experiment
in the unit square. Two pursuers (grey circles) seek the evader (green) greedily at
half the speed of the evader. The evader knows the pursuers’ velocity bound but not
their behavior. The evader replans a pessimistic path (red) to avoid the pursuers in
the worst case, and replans an optimistic path (cyan) in order to reach the goal in
the center of the room. Both paths share a common prefix. The trace of the robot
between frames is drawn as a purple trail.

(goal seeking) and pessimistic (safety seeking) trajectories to balance safety-
seeking and goal-seeking behavior. Adaptive time stepping allows for a high
probability of replanning before a certain time limit — the time to potential
failure, or TTPF — in which safety is guaranteed. Experiments evaluate the
system in a pursuit-evasion scenario.

4.1 Conservative Replanning Framework

We assume that we have access to conservative bounds on the uncertainty of
the environment, and let Ek denote the environment model estimated by the
robot’s sensors at k’th time step. Let F (t;Ek) denote the feasible set with the
current model, and let F̃ (t;Ek) denote the set of states that is guaranteed to
be feasible at time t under the conservative uncertainty bounds. For example,
if obstacle velocities are bounded, then one can consider a conservative space-
time “cone” of possible obstacle positions that grows as time increases.

Consider a purely safety-seeking robot that uses the following scheme:

1. The current trajectory y(t) has a time to potential failure (TTPF) T if
it is safe for some duration T under conservative bounds on uncertainty.
That is, y(t) ∈ F̃ (t;Ek) for all t ∈ [tk, tk + T ].

2. Replanning searches for a path ŷ that increases the TTPF to T + ∆k or
some constant Tmin, whichever is lower.

It is straightforward to use Algorithm 1 to implement such behavior simply
by using the TTPF as an optimization criterion. The robot will remain safe



12 Kris Hauser

unless replanning cannot improve the TTPF within the duration T (and even
then, a constraint violation only happens in the worst case)1. A violation may
occur if 1) no trajectory that improves the TTPF exists, in which case the
planner can do nothing except hope that the potential hazard goes away, or
2) not enough planning time was devoted to finding a safe path.

The risk of condition (2) is somewhat mitigated by the selection of the pa-
rameter Tmin, which governs an “acceptable” threshold for the TTPF. Below
this threshold, the planner enforces that subsequent pessimistic plans must in-
crease the TTPF. Naturally, if safety were the robot’s only objective, the best
approach is to set Tmin to be infinite. In the below section, a finite Tmin will
allow it to make optimistic progress toward a target while being acceptably
confident that safety will be ensured.

If the robot must also seek to optimize an objective V (x), it must sacrifice
some safety in order to do so. Below we describe a contingency planning
framework where the robot’s path has a similarly high probability of safety as
the above scheme, but the planner seeks to simultaneously increase the TTPF
and makes progress towards reducing V (x).

4.2 A Contingency Replanning Algorithm

In our contingency planning algorithm, the robot maintains both an optimistic
and a pessimistic trajectory that share a common prefix (Figure 7). The role
of the pessimistic trajectory is to optimize the TTPF, while the role of the
optimistic trajectory is to encourage consistent progress toward the goal.

Pseudocode is listed in Figure 8. The pessimistic trajectory y(t) is main-
tained and followed by default. The optimistic trajectory yo(t), if it exists, is
identical to y(t) until the “junction” time tj . Each iteration of the replanning
loop begins by establishing time limits for the optimistic and the pessimistic
planners, with sum ∆k (Line 2). Then a top-level decision is made whether
to initiate the new plan from the optimistic or the pessimistic trajectory:

• From the optimistic trajectory (Lines 4–9). To continue progress along
yo after time tj , the robot must generate a pessimistic trajectory that
branches out of yo at some time after tj . An improvement to the optimistic
plan is attempted as well.

• From the pessimistic trajectory (Lines 11–20). To progress toward the tar-
get, the planner will attempt to branch a new pessimistic and optimistic
pair out of the current pessimistic trajectory at time tk + ∆k. The new
junction time will be tk + 2∆k. If this fails, the planner attempts an ex-
tension to the pessimistic path.

To improve the optimistic path, the planner constructs a path in the op-
timistic feasible space F (t; tc) based on the current environment model. A
1 A major benefit of sample-based replanning is that holding TTPF constant, a

factor n increase in computational speed results in a sharp reduction in failure
rate from p to pn.



Adaptive Time Stepping in Real-Time Motion Planning 13

Algorithm 2. Contingency Replanning with Adaptive Time Steps
Initialization:
0a. y(t)← an initial trajectory starting from t = 0.
0b. yo(t)← nil.
0c. Junction time tj ← 0

Repeat for k = 1, . . .:
1. Measure the current time tk.
2. Pick a pessimistic and optimistic time limit ∆p

k and ∆o
k. Let ∆k = ∆p

k + ∆o
k

3. If tj > tk + ∆k (branch the new plan from the optimistic path)
4. Plan an improved optimistic path starting from yo(tj).
5. Plan a pessimistic path ŷ starting from yo(tj + ∆k).
6. If Line 5 is successful, then
7. Set y(t)← yo(t) for t ≤ tj + ∆k, and y(t)← ŷ(t) for t ≥ tj + ∆k.
8. Set tj ← tj + ∆k.
9. End
10. Otherwise, (branch the new plan from the pessimistic path)
11. Plan an optimistic path starting from y(tk + ∆k).
12. If successful, then
13. Plan a pessimistic path ŷ starting from yo(tk + 2∆k).
14. If successful, then
15. Set y(t) ← yo(t) for tk + ∆k ≤ t ≤ tk + 2∆k, and y(t) ← ŷ(t) for
t ≥ tk + 2∆k.
16. Set tj ← tk + 2∆k.
17. End
18. Otherwise,
19. Plan a pessimistic path ŷ starting from y(tk + ∆k).
20. If successful, set y(t)← ŷ(t) for t ≥ tk + ∆k.

Fig. 8: Pseudocode for the contingency replanning algorithm.

query is deemed successful if, after time limit ∆o
k, C(yo) is improved over the

current optimistic path if it exists, or otherwise over the current pessimistic
path. If the query fails, yo is left untouched. Pessimistic queries are handled
exactly as in the prior section.

To choose planning times, we again use an adaptive time stepping scheme
using the exponential backoff strategy of Section 3.2. Pessimistic and opti-
mistic planning times are learned independently. We also make adjustments
in case the candidate time step exceeds the finite TTPF of our paths. First,
if we find that ∆k exceeds the TTPF T of the pessimistic path, that is, fail-
ure may occur before planning is complete, we set ∆p

k = T/2 and ∆o
k = 0.

Second, if we are attempting a modification to the optimistic trajectory, and
the TTPF of the optimistic trajectory T o is less than tj + ∆k, then we scale
∆p

k and ∆o
k to attempt a replan before T o (otherwise, the pessimistic replan

is guaranteed to fail).



14 Kris Hauser

{w

{w

{
{

w

w

Fig. 9: Pursuit-evasion environments 1 and 2. Narrow passages, and hence, difficulty,
are parameterized by w. The evader (green) must try to reach the target (red) within
10 s while avoiding the pursuer (blue), with capture radius 0.05.

0

2

4

6

8

10

12

0.01 0.02 0.05 0.1

Su
rv

iv
al

 ti
m

e

Passage Width

0

0.2

0.4

0.6

0.8

1

0.01 0.02 0.05 0.1

Su
cc

es
s 

ra
te

Passage Width

Cutoff 0.05

Cutoff 0.1

Cutoff 0.2

Cutoff 0.5

E.B.

Fig. 10: (a) Survival time and (b) success rates for evader time-stepping strategies
on problem 1. Results were averaged over ten trials on each passage width. The
adaptive strategy (E.B.) performs as well as the best constant cutoff, and is more
consistent across problem variations.

4.3 Experiments on a Pursuit-Evasion Example

Our experiments evaluate how contingency planning strategies affect an
evader’s performance in a planar pursuit-evasion scenario. The evader’s goal is
to reach a target within 10 s before being captured by a pursuer. The evader
and pursuer move at maximum speeds 1 and 0.5, respectively. The evader
treats the pursuer as an unpredictable obstacle with bounded velocity, and
uses Algorithm 2 with Tmin = 1.0. The evader’s conservative model of F̃ (t, Ek)
does not consider walls to be impediments to the pursuer’s possible movement.
The pursuer treats the evader as an unpredictably moving target, and uses
Algorithm 1 to reach it.

Holding the pursuer’s behavior constant, we varied the environment diffi-
culty and evader’s time stepping strategy on Problem 1 (Figure 9(a)). Here
the pursuer begins in a room with the evader, which must escape through a
narrow passage to reach the target in a second room. Figure 10 shows that
narrow passage width does not affect the evader’s survival much, but rather,
responsiveness is more important to enable it to dance around an approaching
pursuer. The adaptive time strategy appropriately finds short time steps.



Adaptive Time Stepping in Real-Time Motion Planning 15

0

0.2

0.4

0.6

0.8

1

0.01 0.02 0.05 0.1

Su
cc

es
s 

ra
te

Passage width

0

0.2

0.4

0.6

0.8

1

0.01 0.02 0.05 0.1

Su
cc

es
s 

ra
te

Passage Width

Cutoff 0.05

Cutoff 0.1

Cutoff 0.2

Cutoff 0.5

E.B.

Fig. 11: Success rates for evader time-stepping strategies on problem 2 for a (a)
nonadversarial and (b) adversarial pursuer behaviors. In the nonadversarial case
the pursuer is allowed to pass through obstacles. A shorter time step (Cutoff 0.2)
performs well in the nonadversarial case, but a longer time step (Cutoff 0.5) performs
better in the adversarial case. The adaptive strategy works well in both cases.

Next, we considered a more difficult environment, Problem 2 (Figure 9(b)).
Mere survival is not challenging (in all experiments it was over 90%), but
reaching the target is; success requires the evader to choose a different hallway
than the pursuer. We tested a nonadversarial pursuer behavior in which it
“wanders” with velocity varying according to a random walk, and is allowed
to pass through walls. Figure 11(a) shows that in this case, the success rate
is highly dependent on problem difficulty, and no constant cutoff performs
uniformly well across all width variations. Similar variations were found using
an adversarial pursuer (Figure 11(b)). The adaptive strategy performed nearly
as well as the best constant cutoff across all problem variations.

5 Conclusion

The runtime variance of planning queries has been a major impediment to
the adoption of replanning techniques in real-time robot control. This paper
addresses this problem by introducing two adaptive time-stepping algorithms
– a simple one for deterministic environments, and a more complex one for
nondeterministic environments – that tolerate run-time variance by learning
a time step on-the-fly. Experiments on shared control for an industrial robot
arm and on pursuit-evasion examples suggest that replanning may be a vi-
able mechanism for real-time navigation and obstacle avoidance. Additional
videos of our experiments can be found on the web at http://www.iu.edu/ mo-
tion/realtime.html.

References

1. F. Allgöwer and A. Zheng. Nonlinear Model Predictive Control (Progress in
Systems and Control Theory). Birkhäuser, Basel, 2000.

2. S. J. Anderson, S. C. Peters, K. D. Iagnemma, and T. E. Pilutti. A unified
approach to semi-autonomous control of passenger vehicles in hazard avoidance



16 Kris Hauser

scenarios. In Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, pages
2032–2037, San Antonio, TX, USA, 2009.

3. K. Bekris and L. Kavraki. Greedy but safe replanning under kinodynamic con-
straints. In Proc. IEEE Int. Conference on Robotics and Automation (ICRA),
pages 704–710, Rome, Italy, April 2007.

4. J. Bruce and M. Veloso. Real-time randomized path planning for robot nav-
igation. In IEEE International Conference on Intelligent Robots and Systems
(IROS), Lausanne, Switzerland, October 2002.

5. E. Feron, E. Frazzoli, and M. Dahleh. Real-time motion planning for agile au-
tonomous vehicles. In AIAA Conference on Guidance, Navigation and Control,
Denver, USA, August 2000.

6. K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator trajectories
using optimal bounded-acceleration shortcuts. In Proc. IEEE Int. Conference
on Robotics and Automation (ICRA), Anchorage, USA, 2010.

7. D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Kinodynamic motion planning
amidst moving obstacles. Int. J. Rob. Res., 21(3):233–255, Mar 2002.

8. M. Kallmann and M. Mataric. Motion planning using dynamic roadmaps. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), Apr. 2004.

9. S. LaValle and J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE
Intl. Conf. on Robotics and Automation, pages 473–479, 1999.

10. M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime
dynamic a*: An anytime, replanning algorithm. In In Proceedings of the Inter-
national Conference on Automated Planning and Scheduling (ICAPS, 2005.

11. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36:789–814,
2000.

12. D. J. Musliner, E. H. Durfee, and K. G. Shin. Circa: A cooperative intelli-
gent real-time control architecture. IEEE Transactions on Systems, Man, and
Cybernetics, 23:1561–1574, 1993.

13. S. Petti and T. Fraichard. Safe motion planning in dynamic environments.
In IEEE International Conference on Intelligent Robots and Systems (IROS),
pages 3726–3731, 2005.

14. I. Ross, Q. Gong, F. Fahroo, and W. Kang. Practical stabilization through
real-time optimal control. In American Control Conference, page 6 pp., jun.
2006.

15. G. Sánchez and J.-C. Latombe. On delaying collision checking in PRM planning:
Application to multi-robot coordination. Int. J. of Rob. Res., 21(1):5–26, 2002.

16. C. Stachniss and W. Burgard. An integrated approach to goal-directed obstacle
avoidance under dynamic constraints for dynamic environments. In IEEE-RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), pages 508–513, 2002.

17. A. Stentz. The focussed d* algorithm for real-time replanning. In In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), 1995.

18. J. van den Berg, D. Ferguson, and J. Kuffner. Anytime path planning and
replanning in dynamic environments. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2366 – 2371, May 2006.

19. J. van den Berg and M. Overmars. Roadmap-based motion planning in dynamic
environments. IEEE Trans. Robot., 21(5):885–897, October 2005.

20. M. Zucker, J. Kuffner, and M. Branicky. Multipartite rrts for rapid replanning
in dynamic environments. In Proc. IEEE Int. Conf. Robotics and Automation,
April 2007.




