
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. NOVEMBER, 2023 1

Automatically-Tuned Model Predictive Control
for an Underwater Soft Robot

W. David Null1,2, William Edwards3, Dohun Jeong1, Teodor Tchalakov1, James Menezes1,
Kris Hauser1,3, and Y Z1,2,4,5

Abstract—Soft robots have desirable qualities for use in under-
water environments thanks to their inherent compliance and lack
of need for exposed hardware. Nevertheless, these advantages
come at the cost of considerable control challenges. Data-driven
model predictive control (MPC) is an approach that has shown
promise in controlling soft robots. However, manually tuning the
many hyperparameters in the learned dynamics model and the
optimizer can be extremely tedious. In this work, we explore
using data-driven MPC to control an underwater soft robot,
and employ the AutoMPC method to automatically tune the
hyperparameters and generate the controller. In the process, we
extend AutoMPC’s capabilities to handle multi-task tuning and
we add a barrier cost function to enforce actuator constraints.
Our experiments show that the AutoMPC controller reaches
targets with significantly higher accuracy and reliability than
state-of-the-art baselines both in- and out-of-distribution of the
training data.

Index Terms—Modeling, Control, and Learning for Soft
Robots; Machine Learning for Robot Control

I. INTRODUCTION

SOFT robots are the subject of an active research field due
to their potential to comply safely to disturbances, and

to conform their shapes to objects and obstacles, in analogy
to biological systems such as octopus arms [1]. Soft robots
are especially appealing candidates for underwater operations
thanks to the inherent compliance of their actuation mecha-
nisms [2]. However, modeling and controlling soft robots to
achieve precision tasks has remained a significant challenge.
Because soft actuators are nonlinear, have infinite degrees of
freedom (DoF), and exhibit complex dynamic behavior such as
oscillation and hysteresis, analytical models can be incomplete

Manuscript received: May, 22, 2023; Revised October, 26, 2023; Accepted
November, 4, 2023.

This paper was recommended for publication by Editor Cecilia Laschi upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by NSF Grant #IIS-2002492.

1W. David Null, Dohun Jeong, Teodor Tchalakov, James Menezes, Kris
Hauser, and Y Z are with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA emails: kkhauser@illinois.edu and yzyz@umich.edu

2W. David Null, and Y Z are with the Beckman Institute for Advanced
Science and Technology, University of Illinois at Urbana-Champaign, Urbana,
IL 61801, USA

3William Edwards, and Kris Hauser are with the Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

4Y Z is with the Department of Nuclear, Plasma, and Radiological
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA

5Y Z is with the Department of Nuclear Engineering and Radiological
Sciences, University of Michigan, Ann Arbor, MI 48109, USA

Digital Object Identifier (DOI): see top of this page.

End-effector position: (-6.4, 29.2) cm

Computer vision system tracks
markers along robot’s centerline

Water pump
Fixed point: (0,0) cm

Photo taken from 
overhead camera

Tank filled with
water up to
marker level

Soft hydraulic actuator

Tube connecting actuator
to pressure sensor Solenoid valves contained

in the base of each module

Control Computer

Power Supply

Robot, Pump
& Water Tank

Robot Computer Camera

Experimental Setup

Fig. 1. Experimental setup of the 2D underwater soft robot. The sample
image shown is taken from the overhead camera used by our controllers to
track the color-based fiducials along the robot’s centerline in real-time.

or too computationally intensive for real time operations. Data-
driven approaches, such as neural networks, have been widely
explored to model soft robot kinematics and dynamics [3],
[4]. A promising approach to controlling soft robots utilizes
these models in conjunction with model predictive control
(MPC) and has achieved high positioning accuracy in soft
robot control in prior work [5]–[7]. However, it is highly
sensitive to the hyperparameters of the learned model and
optimizer, such as the number and type of hidden units in
a neural network model, cost function, and the optimization
horizon. Tuning them manually is both time-consuming and
may pose safety risks for the robot.

To address this challenge, we adopt the AutoMPC [8]
approach to automatically tune the MPC controller using an
offline data set, and apply it to a two-module, hydraulically-
actuated underwater soft robot (Fig. 1). To better handle char-
acteristics of the experimental system, this paper introduces
several novel extensions of AutoMPC, namely to handle multi-
task tuning and to enforce robot state constraints.

Experiments measure the performance of the AutoMPC
controller in comparison to four baseline controllers, including
open-loop learned inverse kinematics, learned visual servoing,



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. NOVEMBER, 2023

SimulatedSimulated Task

AutoMPC Controller Automatic Tuning Deployment to Robot

Optimizer

Model
𝐱𝑡+1 = መ𝑓sysid(𝐱𝑡, 𝐮𝑡)

Objective
𝐿

Controller

Robot Data

Hyper-
parameters

Task

Controller

Surrogate Model
𝐱𝑡+1 = መ𝑓surr(𝐱𝑡, 𝐮𝑡)

Closed-Loop Simulation

Simulated 
Trajectories Task

Controller Score

Bayesian 
Optimization

Controller

Solenoid Actuation 
Commands

Marker Positions, 
Pressure Levels

Tasks

Hyper-
parameters

Fig. 2. AutoMPC controller diagram shown on the left, tuning process in the center, and deployment loop on the right.

offline reinforcement learning (RL), and RL on learned sim-
ulation models, with all models learned using the same data
set. The auto-tuned MPC controller outperforms the baseline
controllers on target reaching tasks and trajectory tracking
tasks both in- and out-of-distribution of the training data.

II. BACKGROUND

Analytical models such as piecewise constant curvature
(PCC) [9] and Cosserat rod theory [10] have been employed
for soft robot control in underwater environments [11]–[13].
These idealized models inevitably introduce errors, some of
which can be mitigated using feedback control techniques such
as visual servoing [14] and MPC [7]. However, most models
are ill-equipped to handle real-world phenomena such as
non-uniform material density, imperfect actuator fabrication,
external forces such as gravity and friction, and the contact
mechanics of interaction with the environment. Although
recent work has made progress on modeling these effects
using polynomial curvature models on a single underwater
soft robotic tentacle [15], it remains unclear if this technique
can be applied to pressure-driven multi-link soft robots. Finite
element methods (FEM) provide more expressiveness for sim-
ulating complex mechanics [16], [17], but high computational
costs limit their use for real-time control, and identifying
model parameters is challenging. Reduced order FEM paired
with feedback has been applied to control soft robots in real
time [18], though this comes at the cost of simplifying the
model.

Data-driven methods show promise in meeting these chal-
lenges because of their ability to capture nuanced character-
istics of dynamics that are difficult to model analytically [3],
[4], [10]. Feed-forward (FF) and recurrent neural networks
(RNN) have been used extensively to model the forward and
inverse kinematics, and dynamics of soft robots [5], [6], [19]–
[21]. In many of these cases, training data is collected offline
through a random actuation method known as motor babbling,
though some works investigate more efficient ways to explore
a robot’s task and configuration space [22], and others use
analytical or numerical models to generate training data in
simulation [23], [24]. Other works use reinforcement learning
to directly learn control policies that perform well in tasks like
target reaching, and can be robust to system disturbances [25].
However, they typically require a large amount of online
training data [24].

Data-driven MPC has shown promising results when applied
to pneumatically actuated soft robots [5], [6], [20], [26].
Huang et al. demonstrate a ball-catching soft robot which
uses an MPC controller with a dynamics model learned by
linear regression [26]. Other works use deep neural networks
(DNNs) to learn the dynamics of soft robots and develop
MPC controllers based on linearized dynamics models [5],
[6]. A major challenge of these approaches is tuning the many
hyperparameters that come with data-driven MPC. Each cited
work used manual tuning, which can be tedious and potentially
cause instability and damage to the robot.

To address the challenges of manual MPC tuning, several
works have explored automatic tuning of MPC parameters, in-
cluding the model parameters [8], [27]–[29], the optimization
objective [8], [29], [30], and control horizon [8], [29]. Methods
explored in recent works include Bayesian optimization [8],
[28], reinforcement learning [31], and differentiable MPC [32].
In this work, we make use of AutoMPC [8] (illustrated in
Fig. 2) an open-source Python library for automatic tuning
of data-driven MPC. In contrast to other tuning approaches,
AutoMPC tunes the hyperparameters of a variety of dynamics
models and planning algorithms, runs fully offline evaluating
performance on a learned “surrogate” dynamics model, and is
extensible to support custom task specifications. The previous
version of AutoMPC could only tune a single task and
had limited support for state constraints. This paper extends
AutoMPC to incorporate multi-task tuning and a logarithmic
barrier function to handle state constraints in unconstrained
optimizers, like the iLQR algorithm being used in our appli-
cation.

III. UNDERWATER SOFT ROBOT

A. Robot Description

Our experimental platform (Fig. 1) is a planar underwater
soft robot, consisting of two modules connected end-to-end,
each containing a parallel set of soft hydraulic actuators. The
robot can achieve a variety of shapes and configurations by
adjusting the pressure in each actuator.

To control the robot, a pump drives water through a net-
work of solenoid valves into each actuator independently. To
depressurize, the elasticity of the actuators forces water out of
a separate set of solenoid valves. The operating range of each
actuator is 97 kPa to 118 kPa. Pressure levels above 118 kPa
risk damaging the actuator. Feedback is provided by pressure



NULL et al.: AUTOMATICALLY-TUNED MPC FOR AN UNDERWATER SOFT ROBOT 3

0 4 8 12 16-4-8-12-16
x (cm)

y 
(c

m
)

0

4

8

12

16

20

24

28

32

36

40

Task Space
Targets

Out of
Distribution 
Targets

Goal 
Regions for 
Tuning

Training Data

Fig. 3. End-effector trajectories, evaluation targets, and the goal regions used
in tuning overlaid on the robot’s Cartesian workspace. The robot is pictured
in the fully depressurized home position for reference.

sensors for each actuator and by a computer vision system
which tracks color-based fiducials arrayed along the centerline
of the robot. For reference, the resolution of the vision system
is approximately 0.5 mm, and the length of the robot is 240 mm
when fully depressurized and 380 mm when fully pressurized.
Considering that the robot motion is relatively slow, with
a typical end-effector speed of under 1 cm/s, we chose the
control frequency and data sampling rate to be 2 Hz. We define
the state space of the robot as x = (xmarker,xpressure) consisting
of eleven 2D Cartesian marker locations and four analog
pressure readings, and its control u consisting of 8 binary
solenoid inputs, controlling the intake and outtake valves for
each actuator. For more details on the robot, see [33].

B. Offline Data Collection

Offline training data was collected by randomly actuating
the solenoid valves and deliberately navigating the robot
to various regions of the configuration space. The planned
trajectories explored interesting areas of the state space such
as pressure extremes and interesting shapes such as S-curves.
Trajectories sampled at 2 Hz constitute the training set for
both the AutoMPC and baseline controllers. The data set was
lightly postprocessed to remove perception errors and ensure a
consistent time step. Fig. 3 shows the coverage of the 11,358
data samples.

IV. AUTOMPC

We design a controller for the underwater soft robot
using AutoMPC [8], a software library which automates
the design of data-driven MPC. The inputs to AutoMPC
are a data set of discrete-time trajectories D and a task
τ = (J,umin,umax,xmin,xmax), where J is a performance
metric which assigns numerical scores to trajectories, and
(umin, . . . ,xmax) give bounds for the controls and states. The
output of AutoMPC is a controller which consists of a system

ID model f̂sysid, an objective function L, and an optimizer
which generates controls by solving a problem of the form

min
xt:t+H ,ut:t+H−1

L(xt:t+H ,ut:t+H−1)

s.t. xi+1 = f̂sysid(xi,ui)

and umin ≤ ut ≤ umax and xmin ≤ xt ≤ xmax,

(1)

where xt:t+H denotes xt, . . . ,xt+H , ut:t+H denotes
ut, . . . ,ut+H , and H gives the optimization horizon.
AutoMPC uses Bayesian optimization to solve the challenging
design problem of selecting a model, objective function,
and optimizer which effectively solve the task τ . We refer
to the search space of possible controller settings as the
configuration space H, and refer to a particular controller
setting as a configuration h ∈ H.

To handle multiple tasks during tuning, this paper introduces
the notion of a task transformer, Θ, which given a specific
task τ , generates the MPC objective function Θ(τ, h) → Lτ,h.
Although it may seem reasonable to set L to be the same as
the performance metric J , this has challenges in practice. In
a target reaching task where J is designed as a sparse metric
such that the robot is only rewarded for reaching the goal,
MPC cannot directly optimize for J because the cost landscape
is flat almost everywhere. Therefore, the task transformer
creates more favorable objectives for online optimization while
J is only used for offline hyperparameter tuning.

To evaluate a configuration, AutoMPC performs closed-loop
simulation of the resultant controller. Since tuning is per-
formed offline, a surrogate dynamics model f̂surr is learned and
used as a simulator. The simulated trajectory is evaluated by
the task performance metric J to produce the controller score.
To help address the sim-to-real problem, f̂surr is distinct from
f̂sysid with independently selected model hyperparameters.

A. Multi-Task Tuning

Previously, AutoMPC has been used to tune controller
performance for only a single task. In this work, we ex-
tend AutoMPC to synthesize and tune controllers which can
generalize across multiple tasks. Consider a set of tasks
T = {τ1, τ2, . . . , τN}, each with an associated performance
metric Jτi . The AutoMPC controller can be easily executed
for different tasks by using the task transformer Θ to generate
a task-specific objective function. A subset of the tasks Ttrain ⊂
T are selected for tuning. To evaluate a candidate controller,
AutoMPC runs simulations for every task τ ∈ Ttrain in parallel,
scoring each simulation with the associated performance met-
ric Jτ . The scores are then aggregated into an overall controller
score, which can be done using one of several methods, such
as median, worst-case, or specified percentile, though in this
paper we simply take the mean.

B. AutoMPC Set-Up for Underwater Robot

We apply AutoMPC to the underwater soft robot, using the
state and control space defined in Sec. III-A. Since the controls
are binary, the control limits are umin = 0 and umax = 1. The
pressure levels are upper-bounded at 118 kPa to ensure that the
actuators stay below their burst pressure, and lower-bounded at



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. NOVEMBER, 2023

97 kPa since the actuators cannot achieve negative differential
pressure in deployment. The end-effector point xee ∈ R2 is
represented by the marker at the top of the robot. The control
frequency was chosen to be 2 Hz to match the sampling rate
of the training.

We define a set of 40 tasks {τ1, . . . , τ40} each of which
is defined by a goal region Gi ⊂ R2 for the end-effector
position. Each of the 40 tasks corresponds to a 2x2 cm2

goal region centered at a target point as illustrated in Fig. 3.
The size of the goal region was selected to maximize tuning
performance based on observed precision of the robot. Of
these, ten tasks representative of the task space are selected
for Ttrain. To test generalization, we also consider a set of 18
out-of-distribution tasks (also shown in Fig. 3) which are at
least 4 cm outside the task space of 40 tasks. The associated
performance metric for each task is the number of seconds
for which the end-effector point is not in the goal region:

Jτ (x1:T ,u1:T−1) = ∆t

T∑
j=1

(1− 1Gτ (xj,ee)) (2)

where ∆t gives the controller period, and 1Gτ
gives the goal

region indicator function. Experiments found that this sparse
metric yielded better tuning results than other metrics such as
those based on incremental or terminal distance to target.

AutoMPC provides several options to specify the form
of the task transformer, surrogate model, system ID model,
and optimizer. The task transformer Θ(τ, h) generates an
optimizer-friendly objective function of the form

Lτ,h(xt:t+H ,ut:t+H−1) = x̄T
t+HFx̄t+H︸ ︷︷ ︸

(a)

+ sTLB(xt+H)︸ ︷︷ ︸
(b)

+

t+H−1∑
i=t

x̄T
i Qx̄i︸ ︷︷ ︸

(c)

+uT
i Rui︸ ︷︷ ︸

(d)

+ sTLB(xi)︸ ︷︷ ︸
(e)

 (3)

where x̄i = xi,ee − xd
ee, (a) and (c) give a quadratic penalty

on the deviation between the end-effector point at time i and
its desired position xd

ee, computed as the geometric center of
task-specific goal region Gτ , (d) gives a quadratic penalty
on actuation, and (b) and (e) give a logarithmic barrier for
the pressure levels, scaled by s (see Sec. IV-D for details).
Although the physical cost to actuating solenoid valves is low,
the tunable coefficients in (d) allow the tuner to discourage
undesirable behaviors, such as those that may lead to model
instability.

To choose the surrogate model, we used AutoMPC to
perform automatic selection and tuning from among all avail-
able modeling algorithms provided by the AutoMPC package,
namely ARX, MLP, SINDy, and Koopman operators [8].
Tuned over 250 iterations, candidate models were evaluated
based on prediction accuracy on a rolling 10 second horizon
over approximately 8 minutes of recorded robot data set aside
from D. The selected surrogate model was a 1-layer multi-
layer perceptron (MLP) with 101 hidden neurons.

We restricted the system ID model class to MLP due to its
accuracy in surrogate tuning. The system ID MLP candidates
were trained on the same data set as the surrogate model. For
the optimizer, we chose iterative LQR (iLQR) [34] due to its

speed and compatibility with MLP. Altogether, the controller’s
tunable hyperparameters in H include number of layers, layer
sizes, learning rate, and activation function for the MLP, the
optimization horizon, controller frequency, and number of
iterations used by iLQR, and the coefficients Q, F, R, and s
in the objective.

C. Binary Control Outputs

To avoid the need for an additional low-level controller,
we chose to have AutoMPC directly control the state of
the solenoids rather than the internal pressure values. Since
the solenoids require a discrete binary control signal but all
AutoMPC optimizers are geared toward continuous control,
we add a simple post-processing step which rounds the con-
troller output to the nearest valid control option, either 0
(valve closed) or 1 (valve opened). Note that the rounding
strategy should be embedded in the AutoMPC tuning loop
rather than applied post-hoc, because via tuning AutoMPC
can find controllers that perform well in this mode rather than
simply hoping that rounding will work.

D. Barrier Cost Function

As discussed in Sec. IV-B, we introduce state constraints
on the pressure levels to prevent the controller from trying
to reach unattainable or dangerous pressure levels. Since
our chosen optimization algorithm, iLQR, does not natively
support state constraints, we introduce a logarithmic barrier
function to enforce the constraints. These take the form

sTLB(x) =
∑
i∈B

−si [log (xi − xmin,i) + log (xmax,i − xi)]

(4)
where B is a set containing the indices of state dimensions with
finite bounds. The optimal solution to this augmented control
problem converges to that of the original problem only when
the scale factor approaches zero. Thus, adding the logarithmic
barrier may perturb the output of iLQR.

Several solutions have been proposed to address this issue,
such as replacing the barrier function with its second order
Taylor approximation [35], or introducing an outer-loop in the
iLQR algorithm to decrease the scale until convergence [36].
The former does not strictly enforce the barriers, while the
latter assumes that a control sequence for a strictly feasible
trajectory is available. We choose to simply include the
barrier scales as tunable hyperparameters for each constrained
dimension (si > 0). When the initial guess trajectory is in-
feasible, due to perturbations or modeling errors, we relax the
constraints to be ϵ-close to the nominal trajectory (ϵ = 10−10).
Our experiments find that AutoMPC tunes the scales to be
small enough to find a solution close to the original constrained
optimization problem, but large enough to prevent constraint
violation in the training tasks.

E. Tuning Results

We ran 200 iterations of tuning on 27 hyperparameters
(eight hours on a commercial desktop CPU). Although the
hyperparameter space is large, we note that the Bayesian



NULL et al.: AUTOMATICALLY-TUNED MPC FOR AN UNDERWATER SOFT ROBOT 5

optimizer used by AutoMPC [37] has been demonstrated to
successfully scale to as many as 110 hyperparameters [38].
Fig. 4 reports the performance of the best-known controller
over the course of the tuning process. We report the mean and
standard deviation of performance across tasks in both the
training set (Fig. 4(a)) and testing set (Fig. 4(b)). We observe
that AutoMPC improves consistently in controller performance
across training and testing tasks over the first 100 tuning
iterations, however, does not continue to improve over the next
100. Note that while the standard deviation of performance
across tasks remains high, this is to be expected since the
time needed to reach the goal region depends greatly on the
distance between the goal and initial position.

The best configuration at the end of the tuning process had
a single hidden layer MLP system ID model with 140 hidden
units, tanh nonlinear layer, and an MPC horizon of 5, with
iLQR being run every 4 control steps.

V. RESULTS

A. Baseline Controllers

Four separate controllers, described in the following sec-
tions, are developed as baseline comparisons for AutoMPC.
The same data set D is used to train the learned components
of these controllers. Control frequencies are 2 Hz unless oth-
erwise stated.

1) Open Loop Inverse Kinematics: This baseline controller
uses a learned inverse kinematics model to predict the actuator
pressure values needed to produce a desired end-effector
position: xd

P = ĝ(xd
ee). The model is a deep neural network

with 4 hidden layers and 11,316 trainable parameters. Training
and validation data were partitioned from D. The control
algorithm first generates a vector of desired pressures xd

P ∈ R4

from a desired end-effector goal xd
ee ∈ R2, and then drives

each actuator to the desired pressure simultaneously. There is
no feedback to the controller regarding the true end-effector
position and the target pressures are calculated only once.

2) Visual Servo: This baseline controller incorporates feed-
back of the observed end-effector position to minimize the
distance between xee and xd

ee and correct for steady state
error in the open loop controller. A manually tuned PI control
loop running at 0.4Hz updates the x and y coordinates of an
adjusted target xadj where xadj = xd

ee at t = 0. The adjusted
target is calculated as follows, where KP and KI are the
proportional and integral gains respectively, e = xd

ee − xee is
the distance error, eint is the integration error, and esat is the

0 100 200
Tuning iterations

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 M

et
ric

(a)

0 100 200
Tuning iterations

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 M

et
ric

(b)

Fig. 4. Tuning curve showing the mean (solid line) and standard deviation
(shaded region) of training (a) and testing (b) task performance metrics
described in Eq. 2.

saturation limit of the integration error and KP ,KI ∈ R2×2

and xadj, e, eint, esat ∈ R2:

eint(t) = clamp

(∫ t−1

0

e(t) dt,−esat, esat

)
xadj = xd

ee +KP e(t) +KI eint(t)

(5)

New target pressures are calculated at each step using the
adjusted target and the learned inverse kinematics model from
the open loop controller: xd

P = ĝ(xadj). These new target
pressure commands are carried out by a low level control loop
running at 2Hz.

3) Conservative Q-Learning: Conservative Q-Learning
(CQL) [39] is a popular offline model-free reinforcement
learning algorithm that has demonstrated good performance
on the D4RL benchmark [40]. We constructed our data set
by replicating D 10 times for each of the goal positions
xd

ee and augmenting the state with the current goal position.
Next, we assigned the negative square error distance between
the end-effector and the goal position (∥xd

ee − xee∥22) as the
reward function. Finally, we used a continuous action space
and rounded the outputs of the policy to obtain discrete
controls. Given this multi-task reinforcement learning data set,
we trained a CQL implementation from the D3RLPy library
[41] and performed a hyperparameter grid search using the
same parameter set as the original paper [39] to select the
maximum reward policy through rollout simulations on the
surrogate dynamics model f̂surr which was used during the
AutoMPC tuning process.

4) Trust Region Policy Optimization: Recently, deep RL
was applied to control the end-effector position of a two-
module pneumatically-actuated soft robotic manipulator capa-
ble of 3D motion [42]. The proposed method used a forward
dynamics model, learned with an LSTM-based neural network,
to train a control policy using trust region policy optimization
(TRPO) which was evaluated in simulation and on the real
robot through tracking three trajectories.

Here, we apply this approach for the task of position
targeting. The forward dynamics,

xi+1 = f̂fd(xi,xi−1,xi−2,xi−3,ui,ui−1,ui−2,ui−3)

are learned using a recurrent neural network with a single
hidden layer of 128 LSTM units, and is trained using data
from D with a mean squared error loss function. The resulting
model achieves an average end-effector distance error of
1.183 mm over the training data and 1.184 mm over the testing
data with 25th and 75th percentiles of error being [0.545,
1.488] mm over the training data and [0.545, 1.550] mm over
the testing data.

Next, we formulate our Markov Decision Process (MDP)
in a similar fashion to [42]. We describe our states by
st = (xd

ee(t), e(t),xee(t),xmid(t)) ∈ R8 where xd
ee is the target

position, e is the error between the end-effector and the target,
xee is the current end-effector position, and xmid is the current
position of the midpoint of the robot. An action, given by
at ∈ {0, 1, 2 . . . , 255}, corresponds to a configuration of the
eight binary solenoid valves. The reward function used is the
same as [42], rt = −∥xd

ee − xee∥2. The control policy was



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. NOVEMBER, 2023

TABLE I
GOAL REACHING FOR DIFFERENT CONTROLLERS

Task Space Set: 40 targets, 50 seconds per run Out-Of-Distribution Set: 18 targets, 70 seconds per run
Controller Targets Reached xee Error (cm) Time Outside G (s) Targets Reached xee Error (cm) Time Outside G (s)

At All At End Mean (Std) Mean (Std) At All At End Mean (Std) Mean (Std)
Open Loop IK 14 7 2.407 (1.432) 43.862 (10.449) 0 0 4.713 (2.295) 70.0 (0.0)
Visual Servo 27 15 1.382 (0.763) 40.647 (12.839) 6 4 2.844 (3.877) 64.063 (13.963)

CQL 14 4 2.765 (1.724) 42.488 (13.633) 2 0 5.826 (4.452) 68.372 (4.854)
TRPO 35 2 4.259 (2.058) 41.931 (5.304) 5 1 2.740 (1.595) 65.61 (8.025)

AutoMPC 40 39 0.296 (0.249) 19.113 (8.343) 10 7 1.496 (1.604) 55.318 (18.723)

−10 0 10
x (cm)

25
30
35
40

y 
(c

m
)

Open Loop IK

−10 0 10
x (cm)

Visual Servo

−10 0 10
x (cm)

CQL

−10 0 10
x (cm)

TRPO

−10 0 10
x (cm)

AutoMPC

Fig. 5. 2D Histograms representing the final distance error at the end of each experiment for AutoMPC and baseline controllers on the chosen task space
and out-of-distribution targets. Red outlines represent runs where an acutator’s pressure limit was exceeded and the robot emergency-stopped. In these cases,
the last recorded distance to the goal is taken as the final error and reported through the color of the underlying square.

Open Loop IK

Visual ServoCQL
TRPO

AutoMPC
0

2

4

6

8

10

Fin
al

 D
ist

an
ce

 E
rro

r (
cm

)

Task Space Final Error Distributions

Open Loop IK

Visual ServoCQL
TRPO

AutoMPC

OOD Final Error Distributions

Fig. 6. Final controller error distributions over task space and OOD targets.

parameterized by a deep neural network with a single hidden
layer with 64 neurons and Tanh activation function, and was
trained using TRPO with parameters γ = 0.99 and Max KL
divergence of 0.005. For each batch of training, the forward
dynamics model would simulate the robot attempting to reach
a goal position from the starting depressurized position over
100 timesteps. The targets used in each batch of training were
the same ten targets used in Ttrain for tuning AutoMPC. Thus
there were 1,000 steps computed per batch, and 5,000,000
training steps in total over 5,000 epochs. This trained control
policy was tested in closed loop in simulation and on the
underwater soft robot itself.

B. Experimental Results

We test the controllers on the 40 goal positions in the
task space. In each run, the soft robot starts from a fully
depressurized home position with retracted actuators and is
given 50 s to reach a specified target. We measure the distance
error ∥xee − xd

ee∥2, and the time the end-effector spent outside
the goal region G. When testing out-of-distribution testing
tasks, the robot was given 70 s to reach the goals to give it
ample time to reach the farther goal positions.

Table I reports the number of targets reached, mean final
end-effector position error, and mean time spent outside of G
(i.e., Eq. 2). Fig. 5 plots the final end-effector position error

Target Location Open Loop IK Visual Servo
TRPOCQL AutoMPC

Fig. 7. Experiment trajectories from all controllers for selected targets: left is
(−9, 27) cm , middle is (1, 33) cm, and right is (9, 27) cm. The underlying
photograph shows the robot’s final state from the AutoMPC controller. The
paths taken by AutoMPC and the baseline controllers are overlayed. Best
viewed in color.

for all five controllers. Open Loop IK performs poorly in
certain regions, most likely because the mapping from end-
effector positions to pressure configurations is ambiguous.
With the addition of closed loop feedback, Visual Servo is
able to improve performance in locations where Open Loop
IK had high error. CQL is the only controller which exceeds
actuator pressure limits in the task space. We presume that
the augmented data set used to train it is not large enough to
allow for convergence to an adequate policy. TRPO performed
better in simulation on the LSTM-based model f̂fd achieving
a 0.886 cm end-effector distance error, compared to 4.259 cm
error on the real robot. Among the task space targets, TRPO
initially performs well, passing through the goal region in 35
out of 40 cases, but as the experiment continues the trajectory
tends to drift in the +y direction. This drifting is less prevalent
in the OOD trajectories because these targets are at the furthest
points of the robot’s workspace and many experiments are
stopped prematurely due to overpressurization errors.



NULL et al.: AUTOMATICALLY-TUNED MPC FOR AN UNDERWATER SOFT ROBOT 7

−5 0 5
x (cm)

25

30

y 
(c

m
)

Open Loop IK

−5 0 5
x (cm)

Visual Servo

−5 0 5
x (cm)

CQL

−5 0 5
x (cm)

TRPO

−5 0 5
x (cm)

AutoMPC

Fig. 8. Trajectory tracking results. The four desired trajectories are shown in black dashed lines, actual trajectories in color: orange-bottom left, blue-top left,
purple-bottom right, green-top right.

−4 −2 0 2 4
x (cm)

24

26

28

30

32

y 
(c

m
)

Executed
Planned
Goal Region
Pressure Bounds
Target

End-Effector Trajectory

97

118
Upper Left

97

118
Upper Right

97

118
Lower Left

0 25 50 75 100
Time Step

97

118
Lower Right

Actuator Pressure Levels (kPa)

Fig. 9. Left: End-effector trajectory converging to target executed by
AutoMPC with planned trajectories overlaid. Right: executed and planned
pressure levels of all four actuators, indicating high prediction accuracy.

In contrast, AutoMPC consistently achieves high accuracy
in reaching the target, outperforming the four baselines for 35
of the 40 task space goals and 8 of the 18 out-of-distribution
goals. It also significantly outperforms baselines on other
metrics, reaching the most targets during and by the end
of the experiment for both task space (39/40) and out-of-
distribution goals (7/18), lower mean distance error, and lowest
time outside G.

We further evaluate the controllers on a simple trajectory
tracking task. As shown in Fig. 8, we specify four different
trajectories beginning at the home position (0, 24) and termi-
nating at two different task space targets, (−7, 29) and (7, 29)
with a rate of 1.9 mm per second. For each controller, we
implement trajectory following by sequentially updating the
target point according to the given trajectory at every timestep.
Fig. 8 illustrates the paths taken by each of the controllers. The
AutoMPC controller has the lowest average trajectory tracking
absolute error at 1.39 cm compared to 2.87 cm for open loop
IK, 1.74 cm for visual servo, 2.23 cm for CQL, and 1.77 cm
for TRPO.

C. Discussion

Fig. 7 shows representative trajectories for the five con-
trollers on three goals. Open Loop IK tends to undershoot
the target, while Visual Servo tends to overshoot. CQL tends
to finish below the target, whereas TRPO begins by taking a
fairly direct path to the target, but drifts in the +y direction as
mentioned. This is due to the control policy learning to exploit
small inaccuracies in the LSTM model during training to
hold the end-effector stationary. In the real-world, these small

adjustments push the end-effector into unexplored regions
above the target further worsening the drift. These regions
tend to be unexplored because the policy learns in simulation
how to not overshoot the target. AutoMPC generally takes the
most direct path and stays on target throughout the experiment.
Fig. 7 also shows the robot’s final shape after the AutoMPC
controller run, which is not symmetrical for the left and right
targets. Tracked trajectories in Fig. 8 are also observed to be
asymmetrical.

Fig. 9 visualizes a representative run of the AutoMPC
controller’s planned and executed trajectories for an example
target reaching task. We observe that the robot largely follows
the controller’s internal system ID model, demonstrating low
modeling error and successful execution of the trajectories.
Tuning and testing performances of the AutoMPC controller
are observably similar within the task space and degrade
on out-of-distribution tasks. As marked by the red boxes in
Fig. 5, most controllers occasionally reach pressure limits,
triggering run termination. AutoMPC met limits on four out-
of-distribution targets despite our barrier costs due to worsen-
ing model error as dynamics predictions f̂sysid became less
accurate as the robot left the task space. In these cases,
we observe that AutoMPC always optimized trajectories that
would not have exceeded pressure limits if f̂sysid were accurate,
but pressures still tended upwards under the true dynamics.
Possible approaches to handle out-of-distribution dynamics
errors include adaptive control to learn the error online,
and robust control to penalize regions where the model is
uncertain. A potential disadvantage of the AutoMPC controller
is increased computation time due to the use of trajectory
optimization. With the tuned hyperparameters its control loop
is limited to approximately 5 Hz, which is faster than the
robot’s solenoid control frequency but 4–5x slower than the
baselines.

VI. CONCLUSION

In this work, we control an underwater soft robot by tuning a
data-driven MPC controller using the AutoMPC approach. To
apply AutoMPC to our robot, we implement multitask tuning
to achieve generalization across a selected task space and a
barrier cost function to enforce state space constraints. Trained
on an offline data set, we demonstrated that AutoMPC can
outperform a variety of baseline controllers and can generalize
relatively well to out-of-distribution tasks. Areas of future
work include applying our methods to larger robot arms with
more modules, exploring more complex tasks like grasping,
and considering the impact of data collection strategies and
tuning task selection on performance.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. NOVEMBER, 2023

REFERENCES

[1] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida,
“Soft Manipulators and Grippers: A Review,” Frontiers in Robotics and
AI, vol. 3, p. 69, 2016.

[2] Q. Tan, Y. Chen, J. Liu, K. Zou, J. Yi, S. Liu, and Z. Wang, “Underwater
Crawling Robot With Hydraulic Soft Actuators,” Frontiers in Robotics
and AI, vol. 8, p. 688697, 2021.

[3] D. Kim, S.-H. Kim, T. Kim, B. B. Kang, M. Lee, W. Park, S. Ku,
D. Kim, J. Kwon, H. Lee, J. Bae, Y.-L. Park, K.-J. Cho, and S. Jo,
“Review of machine learning methods in soft robotics,” PLOS ONE,
vol. 16, no. 2, p. e0246102, 2021.

[4] K. Chin, T. Hellebrekers, and C. Majidi, “Machine Learning for Soft
Robotic Sensing and Control,” Advanced Intelligent Systems, vol. 2,
no. 6, p. 1900171, 2020.

[5] M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and M. D. Kill-
pack, “Learning Nonlinear Dynamic Models of Soft Robots for Model
Predictive Control with Neural Networks,” 2018 IEEE International
Conference on Soft Robotics (RoboSoft), pp. 39–45, 2018.

[6] P. Hyatt, D. Wingate, and M. D. Killpack, “Model-Based Control of Soft
Actuators Using Learned Non-linear Discrete-Time Models,” Frontiers
in Robotics and AI, vol. 6, p. 22, 2019.

[7] C. M. Best, M. T. Gillespie, P. Hyatt, L. Rupert, V. Sherrod, and M. D.
Killpack, “A New Soft Robot Control Method: Using Model Predictive
Control for a Pneumatically Actuated Humanoid,” IEEE Robotics &
Automation Magazine, vol. 23, no. 3, pp. 75–84, 2016.

[8] W. Edwards, G. Tang, G. Mamakoukas, T. Murphey, and K. Hauser,
“Automatic tuning for data-driven model predictive control,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021.

[9] R. J. Webster and B. A. Jones, “Design and Kinematic Modeling of
Constant Curvature Continuum Robots: A Review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

[10] P. Schegg and C. Duriez, “Review on generic methods for mechanical
modeling, simulation and control of soft robots,” PLoS ONE, vol. 17,
no. 1, p. e0251059, 2022.

[11] F. Xu, H. Wang, K. W. S. Au, W. Chen, and Y. Miao, “Underwater
Dynamic Modeling for a Cable-Driven Soft Robot Arm,” IEEE/ASME
Transactions on Mechatronics, vol. 23, no. 6, pp. 2726–2738, 2018.

[12] Z. Gong, J. Cheng, K. Hu, T. Wang, and L. Wen, “An Inverse Kinematics
Method of a Soft Robotic Arm with Three-Dimensional Locomotion for
Underwater Manipulation,” 2018 IEEE International Conference on Soft
Robotics (RoboSoft), pp. 516–521, 2018.

[13] F. Renda, F. Giorgio-Serchi, F. Boyer, C. Laschi, J. Dias, and L. Senevi-
ratne, “A unified multi-soft-body dynamic model for underwater soft
robots,” The International Journal of Robotics Research, vol. 37, no. 6,
pp. 648–666, 2018.

[14] F. Xu, H. Wang, W. Chen, and J. Wang, “Adaptive visual servoing
control for an underwater soft robot,” Assembly Automation, vol. 38,
no. 5, pp. 669–677, 2018.

[15] F. Stella, N. Obayashi, C. D. Santina, and J. Hughes, “An Experimen-
tal Validation of the Polynomial Curvature Model: Identification and
Optimal Control of a Soft Underwater Tentacle,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 11 410–11 417, 2022.

[16] K. Wandke and Y. Z, “MOOSE-Based Finite Element Hyperelastic
Modeling for Soft Robot Simulations,” IEEE Access, vol. 9, pp. 139 627–
139 635, 2021.

[17] G. Runge, M. Wiese, L. Gunther, and A. Raatz, “A framework for the
kinematic modeling of soft material robots combining finite element
analysis and piecewise constant curvature kinematics,” 2017 3rd Inter-
national Conference on Control, Automation and Robotics (ICCAR), pp.
7–14, 2017.

[18] R. K. Katzschmann, M. Thieffry, O. Goury, A. Kruszewski, T.-M.
Guerra, C. Duriez, and D. Rus, “Dynamically Closed-Loop Controlled
Soft Robotic Arm using a Reduced Order Finite Element Model with
State Observer,” 2019 2nd IEEE International Conference on Soft
Robotics (RoboSoft), vol. 00, pp. 717–724, 2019.

[19] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Learning dynamic
models for open loop predictive control of soft robotic manipulators,”
Bioinspiration & Biomimetics, vol. 12, no. 6, p. 066003, 2017.

[20] P. Hyatt and M. D. Killpack, “Real-Time Nonlinear Model Predictive
Control of Robots Using a Graphics Processing Unit,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 1468–1475, 2019.

[21] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-Based
Reinforcement Learning for Closed-Loop Dynamic Control of Soft
Robotic Manipulators,” IEEE Transactions on Robotics, vol. 35, no. 1,
pp. 124–134, 2018.

[22] M. Rolf and J. J. Steil, “Efficient Exploratory Learning of Inverse
Kinematics on a Bionic Elephant Trunk,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 6, pp. 1147–1160, 2014.

[23] C. C. Johnson, T. Quackenbush, T. Sorensen, D. Wingate, and M. D.
Killpack, “Using First Principles for Deep Learning and Model-Based
Control of Soft Robots,” Frontiers in Robotics and AI, vol. 8, p. 654398,
2021.

[24] G. Li, J. Shintake, and M. Hayashibe, “Deep Reinforcement Learning
Framework for Underwater Locomotion of Soft Robot,” 2021 IEEE
International Conference on Robotics and Automation (ICRA), vol. 00,
pp. 12 033–12 039, 2021.

[25] X. You, Y. Zhang, X. Chen, X. Liu, Z. Wang, H. Jiang, and X. Chen,
“Model-Free Control for Soft Manipulators Based on Reinforcement
Learning,” 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2909–2915, 2017.

[26] Y. Huang, M. Hofer, and R. D’Andrea, “Offset-free Model Predictive
Control: A Ball Catching Application with a Spherical Soft Robotic
Arm,” 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), vol. 00, pp. 563–570, 2021.

[27] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomiin, “Goal-
driven dynamics learning via Bayesian optimization,” in Conference on
Decision and Control (CDC), 2017, pp. 5168–5173.

[28] D. Piga, M. Forgione, S. Formentin, and A. Bemporad, “Performance-
oriented model learning for data-driven mpc design,” IEEE control
systems letters, vol. 3, no. 3, pp. 577–582, 2019.

[29] M. Forgione, D. Piga, and A. Bemporad, “Efficient Calibration of
Embedded MPC,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 5189–5194,
2020.

[30] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic
LQR tuning based on gaussian process global optimization,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2016, pp. 270–
277.

[31] E. Bøhn, S. Gros, S. Moe, and T. A. Johansen, “Optimization of
the model predictive control meta-parameters through reinforcement
learning,” Engineering Applications of Artificial Intelligence, vol. 123,
p. 106211, 8 2023.

[32] S. Cheng, M. Kim, L. Song, C. Yang, Y. Jin, S. Wang, and N. Hov-
akimyan, “DiffTune: Auto-Tuning through Auto-Differentiation,” arXiv,
9 2022.

[33] W. D. Null, J. Menezes, and Y. Z, “Development of a Modular and
Submersible Soft Robotic Arm and Corresponding Learned Kinematics
Models,” 2023 IEEE International Conference on Soft Robotics (Ro-
boSoft), pp. 1–6, 2023.

[34] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in International
Conference on Intelligent Robots and Systems, 2012, pp. 4906–4913.

[35] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative lqr for
on-road autonomous driving motion planning,” in 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2017, pp. 1–7.

[36] ——, “Autonomous driving motion planning with constrained iterative
lqr,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 2, pp. 244–
254, 2019.

[37] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng,
C. Benjamins, T. Ruhkopf, R. Sass, and F. Hutter, “Smac3: A versatile
bayesian optimization package for hyperparameter optimization,” The
Journal of Machine Learning Research, vol. 23, no. 1, pp. 2475–2483,
2022.

[38] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in Neural
Information Processing Systems (NeurIPS), 2015, pp. 2962–2970.

[39] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for offline reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 1179–1191, 2020.

[40] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl:
Datasets for deep data-driven reinforcement learning,” arXiv preprint
arXiv:2004.07219, 2020.

[41] T. Seno and M. Imai, “d3rlpy: An Offline Deep Reinforcement Learning
Library,” Journal of Machine Learning Research, vol. 23, no. 315,
pp. 1–20, Nov. 2022. [Online]. Available: http://jmlr.org/papers/v23/22-
0017.html

[42] A. Centurelli, L. Arleo, A. Rizzo, S. Tolu, C. Laschi, and E. Falotico,
“Closed-Loop Dynamic Control of a Soft Manipulator Using Deep
Reinforcement Learning,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 4741–4748, 2021.


