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ABSTRACT

Models of robots and how they contact the external world is traditionally built based

on physics. However, such an approach is limited when the physics of certain phenomena

are not well understood, when it is computationally prohibitive to solve for the equations,

and when identifying equation parameters and solving conditions is challenging in the real

world with partial and noisy observations. Recently, advancements in deep learning have

provided a potential way to deal with this challenge, leveraging extremely flexible function

approximators such as neural networks. However, the data required for many common

robotics tasks could be prohibitive due to the complexity of the physics involved.

This thesis aims to make progress toward addressing the issue of data efficiency for complex

physics phenomena such as granular media, heterogeneous deformable objects, and acoustics

of human bodies. To this end, this thesis adopts two main methodologies. First, a gray-box

learning approach where learning is tightly integrated with physics, is employed to improve

data efficiency. The core idea here is to decompose physics into parts that can be described by

efficient analytical equations, and parts that are poorly understood or computationally heavy,

which are learned from data. In this thesis, I will demonstrate different ways of combining

knowledge of physics and learning to achieve data efficiency on multiple challenging problems.

The second methodology aims to use meta-learning, or learning to learn, to extract useful

prior knowledge from offline data on related tasks to accelerate online learning on novel tasks.

I will demonstrate a novel meta-learning technique that enables a robot to use vision and

very little online experience to achieve high-quality scooping actions on out-of-distribution

granular terrains. We further show that these two methodologies can complement each other

by demonstrating that the proposed meta-learning algorithm can improve gray-box learning

for deformable objects.

In addition to these two main methodologies, I also discuss my other relevant efforts in

solving contact-rich robotics tasks, including automated excavation and manipulation in

unstructured environments with an immersive, novice-friendly avatar robot that achieved

4-th place in the ANA XPRIZE Avatar Challenge.
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CHAPTER 1: INTRODUCTION

Figure 1.1: The contact-rich tasks tackled in this thesis, which involve various kinds of deformable
objects and environments. Top left: manipulation of heterogeneous deformable objects. Top right:
locomotion over granular media. Bottom left: auscultation. Bottom right: fragmented rocks
manipulation.

One of the key components of a robot system is a predictive model of the world, which is

essential for state estimation, planning, and control. The traditional approach builds models

of the dynamics of robots and how they would contact with the surrounding environment

based on physics [1]. As summarized in Fig. 1.2, while this approach requires little data,

it needs an engineer to manually specify analytical models for each different robot task.

This approach is also limited when the task at hand involves physics phenomena that are

not well understood, with accurate analytical equations not available [2, 3, 4]. Even when

analytical equations are available, it could be computationally prohibitive for them to be

useful in robotics applications. For instance, Tasora et al. proposed a method to simulate

vehicle locomotion on granular media [5], but it costs 3.2 hours of computation on a 20-

core processor to perform 1 s of simulation. In addition, solving the inverse problem, i.e.

identifying equation parameters and solving conditions, could be very challenging in the real

world [6, 7].

Recently, advancements in deep learning have provided a potential way to deal with these

challenges, leveraging extremely flexible function approximators such as neural networks [8].

However, due to the complexity of physical phenomena in the real world, large amounts

of data are required for many common contact-rich robotics tasks when applying black-
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Figure 1.2: An overview of different types of methods and their requirements for training data
vs. engineering effort.

box deep learning [9]. This limits the applicability of black-box deep learning as data are

expensive and even dangerous to collect in a lot of robotics applications. To mitigate this

limitation, structured neural networks aim to improve the data efficiency of neural networks

by designing model architecture that enforces physics concepts [10, 11, 12]. For example,

Li et al. [11] propose to use graph neural networks (GNNs) to learn the particle dynamics

of rigid, granular materials, and fluids, where the GNNs enforce the physics concept that

the physical interactions between the particles happen locally. However, such methods still

need a large amount of data, making them mostly applicable for simulations and simulated

data. To further improve data efficiency, this thesis explores a class of techniques called gray-

box learning [13] that instead of embedding physics concepts, tightly couples learning and

analytical equations of physics. This class of methods has been widely adopted in science

and engineering, and this thesis demonstrates the first application of these techniques to

contact-rich tasks with soft objects and environments as those shown in Fig. 1.1 that lead

to computationally efficient simulations learned from a small amount of real-world data.

While gray-box learning leverages analytical equations to improve data efficiency, such a

method is not always possible. For example, for an excavator manipulating fragmented rocks

in Fig. 1.1, the dynamics of the bucket-rock interaction is highly dependent on the latent

arrangement, geometry, and physics properties of rock particles, making embedding physics

equations extremely challenging. In addition, the large amounts of data required to train

black-box deep learning models might not be available for lots of robotics tasks. Therefore,

this thesis explores meta-learning, or learning-to-learn [14], that achieves faster learning by

extracting useful prior for the task at hand from available data on relevant tasks. In addition,

meta-learning can also complement gray-box learning by improving data efficiency given data

2
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Figure 1.3: Different classes of methods for gray-box learning. The gradient flows during training
are marked in green and red. (a) The machine learning model learns the residual of an analytical
model. (b) Physics-informed Learning: use analytical equations to guide the training of the machine
learning models, and performs joint learning of the machine learning model and the analytical
equation coefficients λ. There are two gradient flows during training: the training loss includes
data loss for the training data (green), and also the analytical equation violations for arbitrary
data points (red). (c) Learning simulator component: a component of the simulator is learned
from data. There exist two different types of training for different methods (two different gradient
flows), depending on the smoothness of the analytical equations. [Best viewed in color.]

from closely related tasks, which is also demonstrated in this thesis.

Gray-box learning and meta-learning are introduced in more detail in the next two sections.

1.1 GRAY-BOX LEARNING

The idea of gray-box learning is to enhance the data efficiency of black-box learning

methods by tightly combining learning and analytical equations based on physics. Here I

provide a taxonomy of gray-box learning methods and discuss their applicability. The three

major classes of gray-box learning methods are illustrated in Fig. 1.3, and their applicability,

pros, and cons are summarized in Tab. 1.1.

3



Method Applicability Pros Cons

Residual
Learning

Efficient and reasonably accurate
analytical equations are avail-
able, and so are the parameters
of these equations

• Simple to imple-
ment

• Applicable to a smaller
range of problems com-
pared to other methods

Physics-
informed
Learning

The form of governing PDEs
of the underlying physics phe-
nomenon is known, and only par-
tial and sparse measurements are
available.

• Can handle partial
and sparse training
data

• Identifies ana-
lytical equation
coefficients

• Computationally heavy
due to joint training of a
neural network and PDE
parameters, especially
when high resolution is
required.

Learn Simu-
lator Compo-
nent

The underlying physics includes
parts that can be described by
efficient and accurate analytical
equations with known parame-
ters.

• Does not require
full knowledge of
the physics

• Requires more manual de-
sign of the model

Table 1.1: Summary of the different classes of gray-box learning methods.

Residual Learning The most straightforward way to leverage analytical equations in

learning is to perform residual learning, where a machine learning model learns the residuals

of an analytical models [15, 16, 17, 18, 19]. This requires that there already exist efficient

and reasonably accurate analytical equations with known parameters and learning is used to

correct for small biases and noises from real-world observations. While the implementation

of these methods is straightforward, their application is limited. In Chapter 5, I adopt

this approach and propose a semi-parametric residual Gaussian process model to model the

acoustic properties of human patients leveraging the knowledge of human anatomy, which

improves the data efficiency over a pure Gaussian process model [20]. This method alleviates

the requirement of the equation parameters by additionally estimating them from online

observations.

Physics-informed Learning This class of methods uses analytical equations to guide the

training of the machine learning models [21, 22, 23, 24, 25], and is a popular technique in

the field of Physics [21] where the analytical equations are in the form of partial differential

equations (PDEs). As shown in Fig. 1.3, this class of methods learns the machine learning

model and the analytical equation coefficients jointly during training. The training loss in-

cludes data loss for the collected training data, and also the analytical equation violations

for arbitrary data points. As a result, physics-informed learning (PIL) can handle partial

and scattered observations. In addition, PIL only requires that the form of the governing

equations is known and that they are differentiable. However, when the equations are com-

4



putationally heavy to compute or scale poorly with the desired resolution, joint training with

a neural network becomes computationally prohibitive.

Learn Simulator Component The last major class of methods learns the component

of a simulator. In the context of robotics, this component is usually the contact model [3,

26, 27, 28], which is motivated by the fact that the contact dynamics between rigid objects

are not well-understood while the contact-free dynamics is known very well. Therefore, the

contact model instead is learned from data, either in an end-to-end manner [3, 27, 28] or

just from the input and output data of the contact model [26], depending on whether the

rest of the simulator is differentiable. The core idea here is to decompose physics into parts

that can be described by efficient analytical equations, and parts that are poorly understood

or computationally heavy, which are learned from data. Compared to PIL and residual

learning, this class of methods does not require that the underlying governing equations are

fully known, and can use learning to replace analytical equations that are computationally

heavy. This class of methods is the most flexible but requires an engineer to carefully design

the pipeline. While the literature that adopts this idea usually deals with the case of rigid

body dynamics with Coulomb friction, in this thesis, I will demonstrate different ways of

combining analytical simulators and learning to achieve data efficiency on problems that

involve complicated physics phenomena such as granular media, heterogeneous deformable

objects, and acoustics of human bodies, shown in Fig. 1.1.

1.2 META-LEARNING

Meta-learning was first proposed in the literature in 1987 [29], and by 1998 a book is writ-

ten on the topic [14]. In the contemporary era, the development of meta-learning has mainly

been associated with end-to-end deep learning, due to its potential to alleviate the draw-

backs of deep learning, such as improving data efficiency and transferrability. The concept

of meta-learning is particularly attractive in robotics, where an autonomous agent’s ability

to master new skills quickly is a hallmark of intelligence. The development of meta-learning

has mainly been spurred by computer vision, and in particular image classification [30], but

there has been an increasing amount of interest in the robotics community, especially for the

sequential decision-making setting.

The goal of meta-learning is to enable fast adaptation of a model during testing on a target

task by training the model with offline data on similar tasks first. These are also referred

to as the meta-testing and meta-training phases in the literature. To accomplish this goal,

during meta-training, the idea of meta-learning is to perform simulated testing using data on

5



offline tasks by treating each offline task as a task the model is adapting to and find model

hyperparameters that maximize the speed of adaptation. Below I first present a taxonomy

of meta-learning methods in the literature.

Metric-based methods. The idea of metric learning resembles that of nearest neighbors

algorithms. In metric-based meta-learning, the aim is to learn good metric or distance

functions so that they will generalize to new tasks [31, 32, 33]. This class of methods is

mainly motivated by image classification and is not suitable for problems considered in this

thesis, which involves regression.

Optimization-based methods. This class of meta-learning methods aims to learn how

to perform optimization during the online testing stage for fast adaptation, including learn-

ing the initial model parameters [34, 35], learning the model weights updates in each it-

eration [36, 37], directly predicting the model weights [38, 39], and learning the optimizer

hyperparameters [40]. Perhaps the most famous meta-learning algorithm is the MAML al-

gorithm [34], which optimizes for the initial weights of a neural network such that the neural

network, after finetuning on the data in the new task, generalizes well. This class of methods

usually applies to neural networks. However, these methods are prone to overfitting in the

few-shot regime [41], especially when the robotics tasks considered in this thesis involve very

sparse support data points in the spatial dimension and prediction needs to be made on the

entire spatial dimension.

Kernel-based methods. Gaussian processes (GPs) is a popular non-parametric method

for learning in the small-data regime. However, GPs do not naturally handle high-dimensional

inputs and deep kernels [42] have been proposed to instead pass inputs through a neural net-

work first to a low-dimensional feature before inputting into a GP. Deep kernel methods for

meta-learning [43, 44, 45] tunes the kernel parameters to work well for each of the training

tasks. One drawback of this class of methods is that they do not scale very well to large

data, but this is not a concern for the tasks considered in this thesis.

Modular Learning Another class of methods is modular learning [46, 47]. In these meth-

ods, modules learned for different tasks are separately learned and stored, and on novel tasks,

the learned modules are assembled to maximize performance. However, this class of methods

is largely unexplored in the literature and does not show superior performance compared to

other methods.

6



1.3 DISSERTATION STRUCTURE

This thesis aims to make progress toward tackling the challenge of learning for robots that

make contact with complicated objects and environments by exploring techniques that im-

prove the data efficiency of learning algorithms. Examples of these objects and environments

are shown in Fig. 1.1, including granular media, heterogeneous 3D deformable objects, and

the acoustics of human bodies.

In Chapter 2 and 4, I adopt gray-box learning and propose simulators with learned contact

models for granular media and heterogeneous deformable objects. In Chapter 2, I propose

a novel data-driven granular contact model based on the stick-slip behavior between rigid

objects and granular media, which can be learned with a few hundred real-world data points.

It is then combined with rigid body dynamics in an optimization-based simulator based on

the Maximum Dissipation Principle. I evaluate the proposed method on three different types

of granular media and show that the simulator simulates plausible interactions between

robots and granular media in real time, orders of magnitude faster than state-of-the-art

analytical methods. Chapter 3 extends this simulator to be a differentiable one by solving

it with a primal interior-point method with a pre-specified duality gap. This chapter then

proposes a bilevel, contact-implicit trajectory optimization formulation that searches for

long-horizon robot trajectories on granular terrains, where the lower-level solves the contact

force with the differentiable simulator to obtain the dynamics constraints, and the upper-

level trajectory optimization problem is solved with direct transcription. I evaluate the

proposed method by optimizing locomotion trajectories of a quadruped robot on various

granular terrains offline and show that it can produce long-horizon walking gaits of high

quality, while standard trajectory optimization and reinforcement learning methods can not.

These two chapters are originally published as [48, 49].

Chapter 4 proposes a point-based surface representation and a heterogeneous, nonlinear

point force response model learned from a robotic arm acquiring force-displacement curves

from a few poking interactions. They are then used in a simulator that solves for deformable

object surface deformation and contact wrench when contacting arbitrarily-shaped rigid ob-

jects based on the Hertzian contact model. I evaluate this method on a variety of challenging

soft objects, and show that the proposed approach learns force response with sufficient accu-

racy to generate plausible contact responses for novel rigid objects. This chapter is originally

published as [50].

In Chapters 2 and 4, learning happens in a supervised manner, where a small labeled

dataset is provided to a machine learning algorithm. Chapter 5, instead, demonstrates an

informative path-planning approach, where the robot plans information-gathering paths to

7



collect data online. Specifically, this chapter proposes the first automated system for the task

of heart and lung auscultation. To select auscultation locations that generate high-quality

sounds, a Bayesian Optimization formulation adopts a gray-box semi-parametric Gaussian

process model that leverages visual anatomical cues to predict where high-quality sounds

might be located, while using auditory feedback to adapt to patient-specific anatomical

qualities. I evaluate the system by experimenting with 4 human subjects and show that the

system autonomously captures heart and lung sounds of similar quality compared to tele-

operation by a human trained in clinical auscultation. This chapter is originally published

as [20].

Chapter 6 presents a vision-based few-shot meta-learning method with a deep kernel model

trained with meta-learning to learn online from very limited experience on novel tasks. It

introduces a novel meta-training approach, Deep Meta-Learning with Controlled Deploy-

ment Gaps (CoDeGa), that explicitly trains the deep kernel to make predictions robustly

under large domain shifts. This chapter applies this method to applications: few-shot scoop-

ing and gray-box learning of deformable object force response models which is first intro-

duced in Chapter 4. The few-shot scooping problem is motivated by autonomous lander

missions on extraterrestrial bodies, and I evaluate the method on a variety of challenging

novel terrains with large domain shifts and show that employed in a Bayesian Optimiza-

tion sequential decision-making framework, the method allows the robot to adapt quickly

to out-of-distribution terrains, surpassing other state-of-the-art meta-learning methods and

non-adaptive scooping strategies in the literature. This application is originally published

in [51]. In the second application, I demonstrate that CoDeGa enhances the point force

response model learning, improving generalization for online learning on novel objects com-

pared to learning from scratch. When used in the analytical simulator, CoDeGa also improves

contact response simulations for novel rigid objects. This shows that CoDeGa is general to

other robotics tasks and complements gray-box learning.

In addition to the core theme of improving data efficiency of learning in deformable en-

vironments, Chapters 7 and 8 show other relevant topics on contact-rich tasks for robots.

Chapter 7 presents a multi-modal model-based reinforcement learning approach to manip-

ulation of fragmented rocks, where the design of the action space leverages the domain

knowledge of excavation. I evaluate this method by running extensive physical experiments

and show that our method is able to significantly outperform manually designed strategies.

This chapter is originally published as [52]. Chapter 8 takes a different angle at solving the

challenges of completing contact-rich tasks in the real world. The idea is to leverage human

intelligence through teleoperation of a robot avatar. This chapter discusses my effort on

designing an avatar system as immersive as possible to use for human teleoperators. The
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avatar system achieved 4-th place in the $10 million ANA XPRIZE Avatar Challenge and

completed all tasks in the finals, which evaluated avatar systems on whether they could be

controlled by novice operators to complete various manipulation, navigation, and social in-

teraction tasks. The contents of this chapter are currently under review for the International

Journal of Social Robots.

1.4 SUMMARY OF CONTRIBUTION

The contributions of this thesis are summarized as follows:

• First simulator that simulates robot locomotion on granular media in real-time while

considering realistic granular contacts (Chapter 2), and first trajectory optimization

method that simulates long-horizon robot gaits over granular terrains (Chapter 3).

• A data-driven simulator that simulates plausible interaction between a robot and het-

erogeneous deformable objects using data acquired from only a few touches (Chapter 4).

• First system for automated heart and lung auscultation (Chapter 5).

• A novel meta-training algorithm for training deep kernels that allows a robot to use

vision and very little online experience to achieve high-quality scooping actions on

out-of-distribution granular terrains (Chapter 6).

• A multi-modal model-based reinforcement learning approach to the excavation of frag-

mented rocks (Chapter 7).

• An immersive robot avatar with commodity telepresence hardware that achieved 4th

place at the recent $10 million ANA Avatar XPRIZE competition, completing all tasks

in the finals (Chapter 8).
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CHAPTER 2: GRAY-BOX LEARNING FOR FAST SIMULATION OF
ROBOT LOCOMOTION ON GRANULAR MEDIA

In this chapter, we propose a gray-box learning approach for simulating robot locomotion

on granular media. We first develop a novel contact model based on the stick-slip behavior

between rigid objects and granular grains, which is then learned from a moderate amount of

data from experiments. The contact model represents all possible contact wrenches that the

granular substrate can provide as a convex volume, called a feasible wrench space. The sim-

ulation uses an optimization-based contact force solver based on the Maximum Dissipation

Principle that combines rigid body dynamics with the feasible wrench space, formulated as

constraints. We show that our method is able to simulate plausible interaction responses with

several granular media at interactive rates, orders of magnitudes faster than state-of-the-art

analytical methods. 1

2.1 INTRODUCTION

Physics simulators are widely used in robotics. They may be used to design and evaluate

mechanisms and behaviors, and can be used inside motion planners and grasp planners to

predict the outcomes of actions. Rigid body simulators model robots and objects as collec-

tions of articulated rigid bodies with either hard or spring-like point contacts with coulomb

friction, and are quite commonly used [53]. Finite Element Method (FEM) simulations are

used to predict the behavior of deformable materials[54, 55], and Discrete Element Method

(DEM) simulations are used to predict the behavior of granular media such as sand and

mud. Although FEM and DEM simulators can capture a greater variety of phenomena than

rigid body simulations, their computational expense is prohibitive for most uses in robotics.

For example, one study reports using 3.2 hours of computation on a 20-core processor to

perform 1 s of DEM simulation for a vehicle moving on granular media composed of 150,000

bodies [5]. Hence, we ask the question, can empirical models be incorporated into rigid body

simulation to efficiently simulate interaction with more complex deformable materials?

We focus on the problem of simulating robot locomotion on granular media. The interac-

tion between a rigid foot and a granular medium is quite complex and cannot be captured

accurately using analytic models. Our novel contribution is a gray-box learning approach,

where a substrate contact model is first learned via experiments, and then is used in a contact

force solver for rigid-body simulation.

1This chapter is reproduced from Yifan Zhu, Laith Abdulmajeid, and Kris Hauser, ”A Data-driven
Approach for Fast Simulation of Robot Locomotion on Granular Media”. In International Conference on
Robotics and Automation (ICRA) 2019.
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We take advantage of the stick-slip behavior of a rigid object, in our case a robot foot,

moving on a granular substrate and model this interaction as a single contact resisted by a

frictional wrench inside a (non-Coulomb) frictional wrench space. The wrench space varies

with the foot’s depth and orientation within the substrate.

During data acquisition, we use a vector of parameters (referred to as the configuration)

to define the relative pose between the foot and substrate. For a single configuration, we

record a set of frictional wrenches exerted on the foot moving at different directions. The

database is constructed by repeating this for a set of discrete configurations. Data can be

gathered from a DEM simulation or a physical testing apparatus. DEM simulation has the

advantage of easy setup and can scale using high performance computing resources, but it

can be difficult to tune parameters to fit real world materials. We also constructed a physical

testing apparatus in this work.

During the simulation stage, both foot and substrate are modeled as rigid objects and

are allowed to interpenetrate. The ground reaction wrench is constrained to lie within the

predicted wrench space at the current foot-terrain configuration, and contact forces are

calculated using a Maximum Dissipation Principle (MDP) optimization. Due to convexity

assumptions, which we find to be satisfied well in practice, the optimization problem can be

solved in time polynomial in the number of robot links. As a result, we are able to simulate

robot locomotion on granular media in interactive time. Simulation results are demonstrated

on both a single foot and a model of the Robosimian quadruped robot traversing flat and

sloped terrains composed of granular materials.

2.2 RELATED WORK

Several works have studied legged motion on granular media. Some authors employ simple

spring-damper [56, 57] or vistoplastic [58] models for terrain deformations. Despite the

convenience of these models, they can deviate far from the empirical behavior of granular

media. Xiong et al record the stress that a plate experiences when penetrating a substrate

and integrates the stress to determine the stability of a robotic leg with a plate-shaped foot

while standing [59]. Using this as a stability region criterion, a controller is developed to

produce stable walking gaits for a planar biped traversing flat granular terrain. This model

is limited to stability determination and can not predict force response while the object is

moving. Li et al develop a method based on resistive force theory to predict the resistance

on a thin-plate-shaped leg moving through granular media [60]. It theorizes that the net

resistive force acting on an object is the linear superposition of resistive forces on infinitesimal

leg elements. They predict net force on a leg by integrating empirically-determined stress
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on leg elements and achieve about 30% error. This algorithm treats the penetration as a

kinematic event and can not predict static stability. In contrast, our method unifies static and

kinematic events and simulates dynamic motions of rigid body interacting with deformable

terrains.

A related community studies off-road vehicle locomotion. Various empirical and physics-

based models for tire-terrain interaction have been proposed. A comprehensive survey [61]

reviews the main efforts in this area. Empirical methods build upon empirical tire-terrain

interaction equations. Meanwhile, physics-based solutions rely on DEM and FEM simula-

tions, which are computationally heavy [5]. Because the geometry and elastic properties of

tires differ greatly from that of robot feet, the methods developed for off-road vehicles are

not suitable for legged robot locomotion.

Data-driven simulation approaches have been adopted in many contexts. Bauza et al use

a variation of Gaussian Process (GP) to learn the outcome of planar pushing (treated as a

kinematic event) and its variability [62]. The method is able to outperform analytic models

after learning only 100 pushing samples. Although it is also possible to use a pure data-

driven approach in our case, we employ a gray-box approach to reduce the amount of training

data. Another work proposes a data-driven method to predict the post-collision velocity of

a planar object [63]. This method learns the optimal parameters of an analytic model given

pre-impact states and outperforms pure analytic model. Our work is similar to this method in

that we are also learning parameters for a contact model. However, instead of optimizing the

parameters by minimizing the discrepancy between simulation and reality, we are extracting

parameters directly from experiments. Wang et al use a data-driven piece-wise linear model

to simulate cloth, which often has complicated nonlinear, anisotropic elastic behavior due

to woven pattern and fiber properties [64]. Local stress-strain parameters are obtained by

linearly interpolating the local strain and angle relative to woven pattern from a database

obtained through experiments. Bickel et al use a similar approach to learn the local stress-

strain relationship through Radial Basis Function (RBF) interpolation on a database of real

experiment samples and use these parameters for FEM simulation [65]. Both papers are able

to capture the non-linear and heterogeneous deformation behaviors of the materials studied.

Like these two works, we are also learning model parameters that capture dominant physical

properties and performing dynamics simulations. But in our case, rather than modeling

the material stress-strain response, we are concerned with approximating the macroscopic

response of granular media on a penetrating rigid object.
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Figure 2.1: The structure of our proposed method for simulating robot locomotion on granular
terrain.

2.3 METHODS

The structure of our method is summarized in Fig. 2.1. During offline learning, we run

experiments on a granular medium to gather empirical force/torque for our contact model

at different configurations. Then we learn a model to predict the wrench space for a new

configurations. For each time step during online simulation, we predict the wrench space

for each contact between a robot and the granular substrate. Finally, the wrench space

constraints are incorporated in an optimization-based contact wrench solver.

The interaction between rigid objects and granular media is complex, and in this work, we

only model the most dominant stick-slip behavior observed in low-velocity motion. Other

properties like memory effects, high-velocity inertial effects [66], force “overshoot” [59], and

force fluctuations [67], are left to future work.

An object moving in granular media causes the grains around it to rearrange and slip

against each other. Dry friction between the grains contributes to the majority of the

resistance the object experiences. If the external force applied on an object is too weak

to cause slippage between the grains, the object sits still. Studies have shown that at low

speeds, velocity-independent drag force dominates [68] and this drag increases with larger

penetration depth [59]. In addition, this drag is independent of the surface friction between

the object and an individual grain [67].

Our proposed contact model limits the possible frictional contact wrenches between a rigid

object and a substrate to a given feasible wrench space. In the planar case considered here

we look at only a 3D wrench space (2D force and 1D torque). The reference frames in this

model are shown in Fig. 2.2. We assume a roughly cylindrical shape of the object. Point pr

is a fixed point on the object, and will be the point about which torques are measured. We

define it on the central axis of the cylinder and 0.25m away from the center of the bottom

plate pcenter. Point pc is the closest point on the surface of the substrate to pcenter. Frame Fc

is centered at pc and its z-axis points is the outward normal of the surface of the substrate.

Frame Fr has the same orientation as Fc but its origin lies on pr.

The feasible wrench space W (Fig. 2.3a) is defined as a set of all wrenches w ∈ R3 that can
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Figure 2.2: Reference frames of a granular contact as described in the text. The configuration of
the cylinder relative to the substrate is parametrized by d and ϕ. FG is the global frame.

(a) 3D view, with
torque in the out-
of-plane direction.

(b) View of (a) in Fx-Fz
plane.

(c) Tilted foot. (d) Upright foot, greater
depth.

Figure 2.3: Visualizations of the resistance wrenches faced by a rigid cylinder on pebbles, where
{FC} is the contact frame.

be exerted by the substrate on the object, with forces and torques measured with respect

to Fr. When the force and torque needed to achieve equilibrium is within W, the object

remains still. When the object starts moving/slipping, the friction resisting the object lies

on the boundary ∂W . This volume also changes depending on the depth d and orientation

ϕ of the object relative to the surface frame Fc. We capture dependent parameters of one

object-substrate contact in a vector θ = (d,ϕ). Our method uses machine learning to predict

the feasible wrench space W(θ), including its depth- and orientation-dependence.

It may be possible to generalize θ to include other dependent parameters, such as 3D

orientation, the local geometry of the substrate, the geometry of the foot, and granular

medium type. However, when more parameters are used, the amount of data needed to

model W accurately grows rapidly. We focused on d and ϕ to strike a balance between data

acquisition difficulty and generalization.

2.3.1 Database and Learning

Data Formulation To model W(θ) we capture points on its limit surface; this exploits

the property that if w ∈ W, then cw ∈ W for all c ∈ [0,1] [69]. Our approach moves the

foot through a granular substrate in various directions and records the resistance wrenches.
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By the stick-slip assumption, this populates a set of points on ∂W(θ). W(θ) is then ap-

proximated as the convex hull of the measured boundary wrenches. Later, we show this

assumption to hold well in practice.

Specifically, we sample n parameter values θ1, . . . , θn, and for each θj we obtain m points

w1,j, . . . ,wm,j on ∂W(θj). To obtain wi,j, we move the foot through the substrate at the

depth and orientation specified by θj at a given velocity vj. Then, wi,j is simply the measured

resistance wrench.

Data Acquisition It may be tempting to gather these measurements simply by moving

to a given value of θ, and executing short movements with different velocities. However,

this poorly ensures that the medium is in slip phase, due to elastic deformation and force

overshoot [59]. Moreover, the medium is disturbed and compacted when the foot moves

through it, which runs the risk of inconsistent measurement due to irregular loading. To

address these issues, our acquisition method executes longer controlled trajectories and resets

the material in-between runs.

For one run with parameter θdes and velocity vdes, both defined with respect to Fc, we

prepare the substrate in a consistent manner and follow a constant-velocity trajectory that

passes through θdes. We record the resistance along the trajectory, filter it, and then obtain

a wrench estimate at the instant when the foot is at θdes.

Specifically, we choose the duration of the whole trajectory to be ttotal and pass θdes at

0.8 ⋅ ttotal, which is chosen for consistency of repeated measurements. The process follows

these steps, as shown in Fig. 2.5:

1. Prepare the surface such that it is flat and not compacted.

2. Move the foot from above the granular surface directly to the starting point of the

trajectory. This point is θdes − 0.8ttotalvdes.

3. Start moving at velocity vdes for duration ttotal, while recording force, torque and

position.

4. Filter the data with a low-pass filter to remove noise. Calculate exactly when the

configuration reaches θdes and record the wrench at this time.

5. Transform the wrench to frame Fr.

The simulation and real robot setup we use for acquiring data is shown in Fig. ??. Simulation

is performed using YADE[70], an open-source DEM software, where a floating cylinder is

moved through a box of 58,500 spheres. The robot we use is Robosimian, a quadruped with
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(a) Simulation setup
in the DEM simulator
YADE for data acqui-
sition.

(b) Data acquisition
apparatus with Ro-
bosimian.

(c) Pebbles and sand used in physical
experiments. A 0.25 USD coin is shown
for scale.

Figure 2.4: Data acquisition is performed in simulation or a physical robot.

(a) Force acquisi-
tion trajectory.

(b) Force-torque data along trajectory.

Figure 2.5: The robot foot trajectory for a run with θdes = [−0.03,
π
2 ] and vdes = [0.014,−0.014,0]

in sand. The four milestones are: (1) starting pose for the foot, (2) start of the constant velocity
trajectory, (3) the robot reaches θdes, (4) end of trajectory.

28 active degrees of freedom and F/T sensors on the ends of its four limbs. One of the feet

is driven through a container filled with a granular medium and acquire measurements with

the F/T sensor connecting the foot and ankle links.

Learning Our database consists of n parameter values θ1, . . . , θn, and for each θj we have

m extreme wrenches w1,j, . . . ,wm,j on ∂W(θj). To model ∂W(θ), we learn m regression

models that predict the m extreme wrenches for a novel value of θ. Specifically, each wrench

regression wi(θ) is learned so that wi(θj) ≈ wi,j for j = 1, . . . , n.
Experiments find that Radial Basis Function (RBF) interpolation, Gaussian Process (GP),

and SVM regression achieve similar performance. Results using 5-fold cross validation show

that RBF interpolation outperforms GP and SVM slightly on our dataset, so we use it in

our experiments.

16



In order to approximate W(θ), we then take the convex hull of w1(θ), . . . ,wm(θ) and

represent the feasible set using the minimal half-space represention:

A(θ)w ≤ b(θ). (2.1)

2.3.2 Simulation Framework

Our simulation framework is built upon the work of [71], which solves for contact forces

based on the Maximum Dissipation Principle (MDP). Specifically, at each time step the

simulation calculates the friction forces maximize the rate of energy dissipation, i.e., min-

imizing kinetic energy at the next simulation frame. Compared to more traditional linear

complementary problem (LCP) methods [72, 73], this method has comparable accuracy and

is more convenient for extending simulations beyond Coulomb friction models.

When applying MDP to our case, we note that the movement of particles in the granular

substrate also contributes KE to the system. While we cannot know the microscopic move-

ments of all the particles, we assume that the aggregate velocity of the particles is a multiple

of the velocity at the bottom of the foot. Our approach then minimizes the sum of the KE

of simulated bodies and the approximated KE of granular particles.

We use generalized coordinate representation, and define the following notation:

• h: time step size

• q, v: generalized coordinates and velocities

• u: joint torque control inputs

• k: generalized external forces

• M : generalized inertia matrix

• Ju: joint control torque jacobian

• ct: stacked vector of contact wrench impulses

• cj: stacked vector of joint constraint impulses

• Jt: contact wrench Jacobian

• Jc: joint constraint Jacobian

• Jp: pcenter velocity Jacobian
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• Mg: mass matrix of the granular particles

During each simulation step, a contact detector examines whether foot i penetrates the

granular medium, and if so, calculates the contact parameters θi. We clamp ϕi to be between

−π
2 and π

2 because more extreme angles would be quite far from the sampled data. The bodies

are considered to be in contact when di is negative. The foot may still touch the substrate

if di > 0 and ϕi ≠ 0. However, since the resistance is small in this case, we ignore it for

simplicity. For wider feet, one might not want to leave this out. For each contact, we predict

its corresponding feasible wrench space W(θi) using the learned model in the foot’s local

reference frame, rotate it to the global frame if it is on a slope and convert it to half-space

representation.

Then, we calculate the joint and contact wrench impulses by solving the following opti-

mization problem:

min
ct,cj

vt+1
T

Mvt+1+(Jpvt+1)TMg(Jpvt+1) s.t.

Jcv
t+1 =0

hA1(θ1)ct1 ≤ b1(θ1)
⋮

hAN(θN)ctN ≤ bN(θN).

(2.2)

In this problem, the velocity on the next time step is vt+1 =M−1(JT
t ct+JT

c cj +JT
u u+hk)+vt.

The second term in the objective represents the kinetic energy of the granular substrate.

Jp transforms the velocity at center of mass of each foot to that at pcenter. Mg is used to

approximate the aggregate momentum of change of the grains as a function of the velocity

of pcenter. The inclusion of Mg has a very small effect when simulating the entire robot but

improves the accuracy of simulating a single robot ankle. The resulting problem is a QP and

can be solved in polynomial time. The position is then updated according to qt+1 = qt+hvt+1.

2.4 EXPERIMENTS AND RESULTS

2.4.1 Data Generation

We test on 1 granular medium in DEM simulation and 2 physical media. The DEM

simulation medium (Beads) uses particles with the following properties:

• Young’s modulus: 3 ∗ 108
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Medium Depth d(m) Tilt ϕ(rad)
Beads [0,-0.06,-0.12,-0.18,-0.24] [0,0.25,0.5,0.75,1,1.25,1.5]
Pebbles [0,-0.015,-0.03,-0.045] [0,0.3,0.6,0.9]
Sand [0,-0.01,-0.03,-0.05,-0.07] [0,0.3,0.6,0.9]

Table 2.1: Discretized configurations for three media.

• Poisson’s ratio: 0.3

• Density: 1631 kg/m3

• Coefficient of friction: 0.577

• Shape: spheres with radius of 0.01 m.

The physical granular media are pond pebbles with diameter of about 0.8-1.0 cm (Pebbles)

and fine play sand (Sand), shown in Fig. 2.4c.

We sample n configurations on a grid of d and ϕ. The ranges respect the size of the foot

and the torque limits of the robot, such that the foot does not get submerged completely

into the medium or exceed the stall force of the robot. The resolution of the grid is chosen

according to practical time and computational resource limitations. Table I summarizes the

the grid parameters. At zero depth, we do not run any experiments and set all wrenches to

zero. Also, to achieve better data efficiency, we exploit symmetry in the foot shape, so that

the wrench space of (di, ϕi) has the same shape as that of (di,−ϕi), but with the signs of

force in the x direction and torque flipped.

For each configuration, we sample a uniform grid of m velocities on the surface on a 3D

unit sphere using spherical coordinates. The unit velocities are then scaled in the x, z, and ϕ

axes by (0.2m/s, 0.2m/s 0.6 rad/s) for Beads and (0.02m/s, 0.02m/s 0.3 rad/s) for Pebbles

and Sand. The discrepancy comes from the fact that the latter two are much stiffer and the

robot foot cannot penetrate into them too much. For DEM simulation, we collect data for

m=26 and m=58. Running our simulators using these two different densities of sampling,

we do not observe a significant difference in the object’s post-contact motion. For real world

experiments, which are more time consuming, we collect data for m=26 only.

2.4.2 Validity of Convexity Assumption

We evaluate the extent to which the wrench space convexity assumption holds. As a

concavity metric, we use the relative distance between the convex hull surface and innermost

point in the convex hull. Specifically, for a given θj this dimensionless measure is Concavityj =
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Medium Average Concavity Worst Concavity
Beads 0.0174 0.1207
Pebbles 0.0013 0.0155
Sand 0 0

Table 2.2: Concavity of empirical wrench spaces

maxi((b(θj) − A(θj)wi,j)/∥wi,j∥). To avoid points with small magnitude, we exclude data

where depth is zero, or the magnitude of the point is less then 1. If all of the inner points

are less than 1, we treat the concavity as zero. Tab. 2.2 lists for each medium the average

concavity across configurations as well as the worst case. Most of the wrench spaces are

convex. There are only a few wrench spaces with concavity larger than 10%, and these occur

at wrenches with small magnitudes.

2.4.3 Simulation Experiments

Accuracy Test To evaluate the accuracy of our method, we command a foot to follow

a trajectory and compare the resistance on the robot acquired from experiments and our

simulator. Our simulator uses a simple PID controller to follow the reference trajectory. The

mass and the moment of inertia of the simulated foot are 7.357 kg and 0.061 kg⋅m2. The PID

gains being used are Kp = [8000,20000,300], Ki = [4000,6000,1000] and Kd = [200,400,10].
Mg is tuned empirically by matching simulated and measured trajectories and wrenches, and

we use Mg = diag(14.714,14.714,0.122), which is twice the inertia of the foot.

Fig. 2.6b shows a good match between the simulated resistance and measured resistance on

a straight trajectory in Sand, showing resistance force and torque increasing with depth. This

is similar for Pebbles medium and is not shown here. Results for a curved path in Pebbles

are shown in Fig. 2.6d. The simulator is able to predict the general trend and approximate

magnitudes of the resistance. However, the simulated resistance stays high as the downward

movement slows, while the actual resistance drops. We believe that the discrepancy is caused

by un-modelled memory effects, such as compaction, and some integral wind-up from the

simulated PID controller. Modeling memory effects would be an interesting problem for

future work.

Drop Test with a Single Foot Next, we perform a test of dropping behavior with one

single object. We drop the object from a small height at two different surface orientations,

displayed in Fig. 2.7. When the object is dropped in vertical orientation of flat terrain, it

remains erect. In slightly sloped terrain, the object begins to tip, but ultimately is able to
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(a) Robot
foot tra-
jectory (to
scale)

(b) Wrenches, Sand (c) Robot foot
trajectory (not to
scale)

(d) Wrenches, Pebbles

Figure 2.6: Comparing measured wrenches between physical Robosimian and our simulator using
a straight path on Sand and a curved path on Pebbles.

(a) Drop on a
slope.

(b) Tilted drop
on a flat sur-
face.

Figure 2.7: Drop tests.

balance because the medium is able to provide a resistance torque. When slightly tilted at

0.2 radian, the object tips over and eventually stops on a flat surface.

2D Quadruped Locomotion Test Our next tests perform a highly simplified model

of the sagittal movement of a quadruped walking on soft terrain. Fig. 2.8 shows images

from the resulting animations. Note that the robot faces to the right of the page and the

simulated terrain is sand, if not specified. In the first simulation, the robot has its weight

shifted to the rear legs and pushes the front feet forward. Because the rear feet are able

to resist a larger force, only the front feet slip. The second simulation is one trotting gait,

where the diagonal two limbs move simultaneously. The feet sink and lift realistically as the

weight of the body shifts. In the third simulation, the robot is dropped onto a sloped terrain,

with its joints locked. The robot initially slides and accelerates, but eventually stops when

the terrain flattens. Pebbles allow shallower penetration and stops the robot at a higher

potential energy, compared to sand. This is expected because pebbles are able to provide

greater resistance force at the same penetration depth.
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(a)

(c)

(b)

Figure 2.8: Locomotion tests with different terrains on a simplified 2D Robosimian model facing
right. (a) Pushing the front feet forward. Because the rear legs are sunk deeper in the sand, they
resist motion more, so the front feet slip. (b) A trot gait showing deeper penetration during the
two-foot phase. (c) Sliding on a slope and eventually stopping, with joints fixed. The red and green
lines show the trace of the front and rear feet, respectively. The snapshots of the robot are from
the simulation on pebbles.

Computation Speed In this test, we use a more complicated quadruped model that

includes 1 body and 4 limbs, with each limb consisting of 2 links and 1 foot. In total,

a system of 13 rigid bodies and 12 revolute joints are simulated in Matlab on a standard

PC with an Intel i7 2.4GHz processor. The resultant optimization problem has 4 contacts,

36 variables, 24 constraints associated with joints, and 4 sets of constraints from granular

contacts. One frame on average takes about 0.343 s to compute, with about 90% of the

time spent on solving the optimization, and about 5% on interpolating the wrench spaces.

By utilizing a complied language and a more task-specific convex optimization package, we

expect to speed up computation significantly.

2.5 CONCLUSION

This chapter proposed a contact model for rigid objects and granular media to capture

depth-dependent stick-slip phenomena. We present a procedure to acquire data-driven fea-

sible wrench spaces and learn the parameters for this contact model. An optimization-based

contact force solver is developed to use this data to simulate continuous granular contact with

multiple contacts at interactive rates. Future work should consider improving the prediction

accuracy by incorporating memory effects of granular material like compaction and pile for-

mation. It is also important to examine improving the data efficiency as more parameters

are included in the learning model, which makes generalization more challenging.
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CHAPTER 3: CONTACT-IMPLICIT TRAJECTORY OPTIMIZATION
WITH LEARNED DEFORMABLE CONTACTS USING BILEVEL

OPTIMIZATION

Using the simulator based on gray-box learning presented in Chapter 2, this chapter

shows a bilevel, contact-implicit trajectory optimization (TO) formulation that searches for

robot trajectories on granular terrains. On the lower-level, contact forces are solved via a

quadratic program (QP) with the maximum dissipation principle (MDP), based on which

the dynamics constraints are formulated in the upper-level TO problem that uses direct

transcription. Our method uses a contact model for granular media that is learned from

physical experiments, but is general to any contact model that is stick-slip, convex, and

smooth. We employ a primal interior-point method with a pre-specified duality gap to

solve the lower-level problem, which provides robust gradient information to the upper-level

problem. We evaluate our method by optimizing locomotion trajectories of a quadruped

robot on various granular terrains offline, and show that we can obtain long-horizon walking

gaits of high qualities.2

Figure 3.1: An optimized trajectory on a flat terrain with sand (tiles are 1m in length). The
centroid of the robot torso over the 9s trajectory is traced in red, and the front right foot position
in green. The contact wrench space of the front right foot is in purple. [Best viewed in color.]

3.1 INTRODUCTION

Legged robot locomotion planners typically assume rigid contacts with Coulomb friction,

but non-rigid terrains with different frictional characteristics are pervasive in the world, e.g.

sand, mud, carpet, etc. To tackle these challenging soft terrains, existing techniques rely on

feedback control while assuming rigid contacts [74], or modeling the terrain as a mass-spring

damper [56, 75] or as vistoplastic [58] in the controller. While inaccurate contact models

2This chapter is reproduced from Yifan Zhu, Zherong Pan, and Kris Hauser, ”Contact-Implicit Trajectory
Optimization With Learned Deformable Contacts Using Bilevel Optimization”. In International Conference
on Robotics and Automation (ICRA) 2021.
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result in sub-optimal motions, our proposed trajectory optimization (TO) framework adopts

realistic soft contact models learned from physical experiments on granular terrains.

This chapter is motivated by our prior work [48] that built a semi-empirical simulator

for robots traversing granular terrains. Based on the stick-slip behavior of a rigid body

contacting granular media, a granular contact is first modeled as all possible contact wrenches

between a robot ankle and the granular terrain, which is a convex volume learned from data.

Then during online simulation, contact forces are solved by a quadratic program (QP) with

linear constraints during each simulation frame, based on the maximum dissipation principle

(MDP) [71].

In this work, we incorporate this simulator into motion planning with granular contacts,

where we take advantage of the accurate learned contact models to obtain high-quality

trajectories. In particular, we employ TO, which is a powerful framework for generating

locally optimal trajectories for robotic systems (for details on TO, refer to the survey by

Betts [76]). Compared to sampling-based motion planning methods [77], which can generate

globally optimal trajectories, TO methods scale better to high-dimensional robotic systems.

Our contribution in this work is two-fold. First, we propose a bilevel TO framework that

is capable of automatically searching for locomotion trajectories of legged robots traversing

granular terrains. Second, we build a differentiable rigid body simulator with learned gran-

ular contact models. Each simulation frame consists of solving a QP, whose gradients are

robustly obtained by employing a primal interior-point method with a pre-specified duality

gap.

On the upper-level of the TO framework, we adopt a direct transcription formulation that

is also contact-implicit. The dynamics constraints of the TO are obtained through the lower-

level optimization, which is our differentiable physics simulator. We are then able to supply

analytic gradients of the dynamics constraints to the optimization solver for efficiency and

accuracy.

In this work, we focus on locomotion planning on granular terrains for a Robosimian

quadruped developed by JPL, although it could be applied to general contact-rich motion

planning, with a contact model that is convex and twice-differentiable. This turns out to be

a very challenging problem, ill-posed and with potentially many local minima. However, we

show that our method can automatically generate locomotion trajectories of long horizons

offline on a variety of terrain shapes, where competitive methods such as reinforcement

learning and standard trajectory optimization fail to generate trajectories on a simple flat

granular terrain.
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3.2 RELATED WORK

While TO has been applied successfully to smooth dynamical systems, planning contact-

rich trajectories, e.g. locomotion planning for legged robots, is still a challenging problem

due to the underlying non-smooth, hybrid dynamical system. Successes have been achieved

by adopting a pre-specified contact sequence [78, 79], however, manually designing contact

sequences requires significant engineering and could be daunting for complex systems.

Contact-implicit TO: Recently, contact-implicit TO methods [80, 81, 82, 83, 84] are

proposed to solve this problem by folding the contact dynamics into the formulation of the

mathematical program, which avoids the need of a contact sequence input. Our method

falls into this category as well, and we review the closely related works here. Posa et al. [80]

propose a direct transcription method that searches locally optimal trajectories for robots

with inelastic impacts and rigid contacts with Coulomb friction. Based on the formulation

of multi-contact dynamics as a Linear Complementarity Problem (LCP) [85] for dynam-

ics simulation, the proposed algorithm introduces contact forces as additional optimization

variables and incorporates complementarity constraints (CC) in the TO formulation. The

resulting algorithm solves a mathematical program with CC and is demonstrated to generate

locally optimized trajectories for high-dimensional systems. One drawback of this method is

the high non-linearity introduced by the CC, which leads to poor convergence performance.

To avoid having CC, Carius et al. [83] propose a bilevel TO framework, where the lower-level

solves for the robot dynamics with rigid contacts using a time-stepping scheme of rigid body

dynamics forward simulation, whose gradients can be obtained analytically. The upper-level

TO uses iLQR [86], a shooting type method, and is shown to be able to compute a tra-

jectory with 300 time steps for a 3 degree-of-freedom (DoF) robot in 2.18 ms. The idea of

our method is closely related to this work. Instead of folding forward simulation with rigid

contacts into system dynamics constraints, we use granular contacts. In addition, we use a

direct TO method which is numerically advantageous for long trajectories. Another method

that aims to remove CC is proposed by Landry et al. [82]. They also put forward a bilevel

TO framework, where the upper-level is a direct transcription method and the lower-level

solves a QP to obtain the tangential contact forces at the rigid contacts. Our method is most

closely related to this work. While Landry et al. [82] only include part of the system dynam-

ics in the lower-level optimization (only tangential contact forces), our method solves all the

system dynamics implicitly in the lower-level. Our method considers a general contact model

and we also adopt a different strategy to choose a gradient for the lower-level problem when

it is not uniquely defined. Landry et al. [82] use a first-order method to solve the QP where

the gradient of the solution could be non-unique and they resort to choosing a subgradient
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with least-squares, which does not have a strong theoretical foundation. However, we use an

interior point method with a pre-specified duality gap where the gradient is always uniquely

defined.

Bilevel Optimization: Our method falls into the general category of bilevel optimiza-

tion [87], which is an optimization problem (upper-level) whose constraints involve other

optimization problems (lower-level). In addition to the two works that are mentioned above,

bilevel optimization has been applied to TO in a variety of works [88, 89]. Farshidian et

al. [88] propose a bilevel optimization framework to plan motions for legged robots, where

the upper-level optimizes time allocation for a fixed contact sequence, and the lower-level

computes optimal continuous control inputs. Tang et al. [89] propose a method to gener-

ate time-optimal trajectories for smooth dynamical systems, which optimizes the trajectory

shape on the upper-level and the time allocation on the lower-level. While these two methods

decompose a challenging optimization via bilevel optimization, our method encodes system

dynamics naturally into lower-level optimization.

Locomotion on Soft Terrain: Instead of planning motions on soft terrains, previous

methods design controllers compensating for soft contacts. Kang et al. [56] model a soft

terrain with compressive springs and stablize the CoM motion of a humanoid by tilting its

ankle according to the attitude angle of the robot. Vasilopoulos et al. [58] calculate controls

of a 1-DoF leg to maintain a desired height while jumping on a soft terrain based on a

viscoplastic model. Fahmi et al. [75] model a soft terrain as a compressive spring, run an

online controller to estimate the compliance, and incorporate the compliance explicitly into

a whole-body-control framework for a quadruped. Compared to building controllers, our

method plans trajectories with long horizons, allowing for more diverse and optimal motion

plans.

3.3 METHOD

3.3.1 Problem statement

We search for a discretized trajectory for a legged robot, represented by the states x[⋅] ∈
Rnx and controls u[⋅] ∈ Rnu ., where nx and nu denote the dimensions of state and control.

Let a robot state be the concatenation of robot configuration and velocity, i.e. x = [q, q̇] and
x[k] = [qk, q̇k], the dynamics of the robot is represented by the Newton-Euler equation:

M(q)q̈ +H(q, q̇) = u + JT
c f, (3.1)
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where u is the joint torque, M is the generalized mass matrix, H is the gravitational, cen-

trifugal and Coriolis forces, Jc is the contact jacobian, and f is contact wrench. Using an

Euler integration scheme, the robot dynamics along the discretized trajectory x[⋅] and u[⋅]
is:

q̇k+1 =M(qk)−1(uk + JT
c f −H(qk, q̇k)) ⋅ dt + q̇k,∀k

qk+1 = q̇k ⋅ dt + qk,∀k,
(3.2)

where dt is the time step. Formulating this equation requires solving the contact wrench f ,

which is computed by a differentiable semi-empirical simulator for robots traversing granular

terrains. Details of the simulator are described in the next section.

3.3.2 Robot dynamics with granular contacts

Contact model This contact model is first discussed in Chapter 2. Inspired by the stick-

slip behavior of granular media, we consider contact models that limit the possible frictional

contact wrenches between a rigid robot foot and a granular substrate with a convex wrench

space, which can be learned from data obtained in physical experiments [48]. If the external

wrench can be resisted by a wrench in the wrench space, the contact sticks, and otherwise

it slips. The shape of the wrench space changes as the penetration depth and orientation

of the rigid body change, shown in Fig. 3.1, and here we have a learned twice-differentiable

contact model w.r.t. the robot configuration:

f ∈W ⇐⇒ f ∈
⎧⎪⎪⎨⎪⎪⎩

V

∑
i=1

wivi(q)
RRRRRRRRRRR
wi ≥ 0 ∧

V

∑
i=1

wi ≤ 1
⎫⎪⎪⎬⎪⎪⎭
. (3.3)

Instead of the half-space representation presented in Chapter 2, this is a vertex representation

of the convex wrench space, where V is the total number of vertices and vi(q) is a learned

vertex, which is dependent on the robot’s configuration and the terrain shape.

Contact detection We only consider contacts between the robot feet and the granular

substrate. At a single contact, each learned contact wrench vertex vi(q) is a smooth function

of penetration depth and orientation, i.e.:

vi(q) = vi(−zTp(q),R(q)), (3.4)

where p(q) is the bottom center point of the robot foot that is having contact, z is the

outward normal at the surface point that is closest to p, and R(q) is the 3×3 local-to-global

rotation matrix. In our prior work, we take the assumption that the environment is a flat

27



terrain paved using granular materials. Here, we propose a heuristic method to generalize

this model to an arbitrary terrain shape represented using a watertight mesh. Since the

terrain is a watertight mesh, we can compute a singled distance value from p(q) to the

surface of the mesh, which is denoted as d(p(q)). We can also estimate the generalized

outward normal direction as:

z(q) = ∇d(p(q)). (3.5)

We further denote R̄(z̄) as the minimal rotation matrix that transforms [0,0,1]T to z̄. The

generalized vertex of the contact wrench space is then defined as:

v̄i(q) = R̄vi(d(p(q)), R̄TR(q)),

f ∈W ⇐⇒ f ∈
⎧⎪⎪⎨⎪⎪⎩

V

∑
i=1

wiv̄i(q)
RRRRRRRRRRR
wi ≥ 0 ∧

V

∑
i=1

wi ≤ 1
⎫⎪⎪⎬⎪⎪⎭
.

(3.6)

Intuitively, this is a generalized pullback operator from the arbitrary shape terrain to the

flat ground. Note that to form a well-defined wrench space that can be used in a bilevel

optimization, v̄i must be a twice-differentiable function of q. However, the generalized pen-

etration depth computed using an exact triangular mesh is generally non-differentiable. To

remedy this case, we first compute a signed distance field for the mesh on a uniform grid

and then use cubic interpolation to approximate d.

Contact wrench solving The robot dynamics is solved based on the MDP [71], which

states that the frictional contact wrenches would maximize the energy dissipation of the

system. Therefore, a lower-level optimization problem is given by:

argmin
f

1

2
∥M(qk)−1(uk + JT

c f −H(qk, q̇k)) ⋅ dt + q̇k∥2M(qk)
s.t. f ∈W ,

(3.7)

where ∥⋅∥2M is the quadratic form. Here we slightly abuse the notation and let f andW denote

a concatenation of all the contacts instead of a single contact. The program is a QP which

can be solved efficiently in polynomial time, and the gradients of this program w.r.t. all

problem parameters can be obtained by sensitivity analysis, whose details we refer readers

to [90]. One concern in sensitivity analysis is the loss of linear independence constraint

qualification (LICQ), which gives non-unique gradients. The constraints in Eqn. 3.7 are

learned from data and we cannot guarantee LICQ, and in practice we do observe the loss
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of LICQ in some cases. We handle this by using a primal, interior point method with a

pre-specified duality gap to solve the QP, where the solution contact wrenches as a function

of problem parameters, i.e. f(qk, q̇k, uk), is always single-valued and twice-differentiable.

If we assume that the QP in Eqn. 3.7 is strictly convex, then function f is single-valued.

However, using this single-valued function f in a bilevel optimization is inappropriate be-

cause it is known that f is only C0-continuous [91], while large-scale constraint optimizers

usually require twice-differentiable constraints [92]. To ensure both strict convexity and

twice-differentiability, we propose to use a primal, interior-point solver with a finite duality

gap. In this way, the QP is transformed into the following unconstrained optimization:

argmin
f

1

2
∥M(qk)−1(uk + JT

c f −H(qk, q̇k)) ⋅ dt + q̇k∥2M(qk)

− µ ⋅ dt
V

∑
i=1

log(wi) − µ ⋅ log(1 −
V

∑
i=1

wi),

(3.8)

where µ is the finite log-barrier coefficient. Since the log-barrier function always contributes

a full-rank Hessian matrix, the above problem is strictly convex and the function f is single-

valued. Further, by the implicit function theorem, the function f is twice-differentiable as

long as the problem data, i.e. M,H,J, vi, are sufficiently smooth. In practice, we solve the

unconstrained optimization using Newton’s method with the initial guess from last iteration

of upper-level optimization.

As a result, for a twice-differentiable learned contact model, the contact wrenches are a

smooth function of problem parameters, whose gradient information can be robustly obtained

via sensitivity analysis, which we denote as ∇f(qk, q̇k, uk). In addition, since we already

calculate the gradients of all problem data during sensitivity analysis. Specifically, denoting

Eqn. 3.2 as g(qk, q̇k, uk), its gradient ∇g(qk, q̇k, uk) is obtained via the chain-rule.

3.3.3 Bilevel trajectory optimization

Our method uses a direct transcription TO method, where the TO is formulated as a non-

linear program (NLP) that locally optimizes a physically correct discrete trajectory. Overall,
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our method solves the following NLP:

argmin
x[⋅],u[⋅],c[⋅]

J(x[⋅],u[⋅],c[⋅])

s.t. x[0] ∈ Xinit,x[N] ∈ Xgoal,

x[⋅] ∈ X ,u[⋅] ∈ U ,
Eqn. 3.2 holds,

h(x[⋅],u[⋅],c[⋅]) = 0,

(3.9)

where c[⋅] ∈ Rnc represents additional problem-specific variables of dimension nc. The feasible

regions for the initial and final states are specified in Xinit and Xgoal. The feasible states and

controls along the trajectory are defined in X and U . N is the total number of grids in the

discrete trajectory. J is some performance measure we aim to optimize. Other additional

equality constraints are encoded in h(⋅).
This problem is bilevel because the dynamics constraints Eqn. 3.2 entail solving a set

of lower-level optimization problems, i.e. Eqn. 3.7, which were introduced in the previous

section. In practice, solving such a challenging TO problem using a NLP solver requires

analytical gradients of the objective function and the constraints. In particular, the analytic

gradients of the dynamics constraints ∇g(qk, q̇k, uk), given by our differentiable simulator, are

supplied to the NLP solver, along with the gradients of other constraints and the objective

function in Eqn. 3.9.

3.3.4 Spline constraints

To improve the smoothness of the optimized locomotion gaits, we present a scheme to

use splines to regularize the end effector movement and avoid “stutter step“. Intuitively, we

expect an optimized robot gait where each robot foot traces a smooth path. In particular, for

each robot foot, we represent its position and orientation with a cubic spline whose control

points are c[⋅] ∈ Rn, where n is 3 in 2D and 6 in 3D. We use Tj(k) ∶ [0,N −1]→ Rn, to denote

the interpolated position and angle of robot foot j along the cubic spline specified by the

control points, where N is the total number of grid points in the discrete robot trajectory.

In addition, let FKj(x) ∶ Rnx → Rn denote the forward kinematics of the robot that gives

the position and angle of the j-th robot foot, the spline constraints are formulated as:

FKj(x[k]) = Tj(k),∀j, k. (3.10)
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In practice, we might only use partial dimensions of a spline, i.e. we may choose to use only

the position for the spline control points, without the angle.

3.3.5 Cost function

We propose a cost function that includes 3 different components, where the third com-

ponent is optional: Jtotal = Jpath + Jperiodic + Jspline. Jpath is the quadratic path cost defined

as Jpath = ∑k∥x[k] − xref∥2Q + ∥u[k]∥2R, where xref is the reference robot state that is man-

ually selected, and Q,R are diagonal weight matrices. We further regularize the trajec-

tory by introducing a periodic cost that encourages the robot limbs to move periodically:

Jperiodic = ∑N−P
k=0 cp(F ⋅ qk − F ⋅ qk+P )2, where cp is a weight constant, F is a selection matrix

that selects only the limbs of the robot, and P is the desired period.

Instead of having the splines be hard constraints, we find in practice that soft constraints

might work better for certain terrains. Therefore, we propose an alternative formulation

where we use a spline cost to replace the spline constraints. Letting h(⋅) denote the con-

straints in Eqn. 3.10, the spline cost is Jspline = cs∥h(⋅)∥2, where cs is a weight constant.

3.3.6 Full formulation

A final consideration is that for contact models learned from data, it is prudent to limit

the input, i.e. depth and orientation, to stay close to the range of collected data, because

learned models have questionable extrapolation capability. We encode this constraint, along

with the robot joint position and velocity limits, in X . In addition, we have the joint torque

limits u[⋅] ∈ U .
The complete formulation is the following:

argmin
x[⋅],u[⋅],c[⋅]

Jtotal

s.t. x[0] ∈ Xinit,x[N] ∈ Xgoal,

x[⋅] ∈ X ,u[⋅] ∈ U ,
Eqn. 3.2 holds,

Eqn. 3.10 holds. (if not using spline cost)

(3.11)

Note that c[⋅] represents the cubic spline control points for all limbs.
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(a) (b) (c)

(d)

Figure 3.2: (a): optimized gait on the 10○ slope. (b): non-optimized gait on the 10○ slope. (c):
optimized gait on the -10○ slope. (d): optimized gait on the wavy terrain. The torso centroid is
traced in red, while the front right foot position in green. [Best viewed in color.]

3.4 RESULTS

3.4.1 Robot and contact model

We use a Robosimian quadruped robot model for all the experiments, shown in Fig. 3.1.

We consider a 2D model where only sagittal movement of Robosimian traversing soft terrain

presents. The robot has a total of 4 limbs and 12 revolute joints, making nx = 30 (position

and velocity of the joints and torso) and nu = 12.
The contact model we consider here is the learned granular contact model for sand from

our previous work [48]. We use radial basis function (RBF) interpolation as the learning

model for data gathered from physical experiments.

3.4.2 Desired gait and performance metric

Our experiment attempts to generate a walking gait that follows a desired torso forward

velocity on different terrains. Since the cost of an optimized solution does not directly reflect

the quality of a gait, we define 2 metrics to quantitatively evaluate it. The first metric

measures how well the desired torso velocity is tracked: Mv = ∑N
i=0∣xv,i − x̂v ∣/N , where xv,i is

the torso forward velocity at grid point i, and x̂v is the desired torso forward velocity. The

second metricMc measures the cost of transport, which is∑N
k=0∑nu

i=0∣(F ⋅q̇k)[i]⋅u[k][i]∣/(smg),
where (F ⋅ q̇k)[i] and u[k][i] are the i-th joint velocity and joint control at grid k, s is the

total translation of the torso, and mg is the weight of the robot. Note that for humans, the

cost of transport of walking on sand has been reported to be 1.6–2.5 times that of walking

on hard ground [93].
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3.4.3 Parameter tuning

The optimization problem tackled here is very challenging, and we found in practice that

the convergence behavior and trajectory quality are sensitive to parameters. Here is a sum-

mary of all the parameters in our formulation:

• Total number of grid points N , time step dt.

• The quadratic state cost matrix Q is a diagonal matrix, whose only nonzero diagonal

entries are those for the torso forward velocity, torso orientation, and torso height, denoted

by Qv,Qo,Qh.

• The nonzero entries of xref include the desired forward velocity, torso height, and torso

orientation, denoted by x̂v, x̂o, x̂h.

• The quadratic control cost matrix R, which is diagonal.

• The period P and the periodic cost weight cp.

• Spline dimensions, and the number of control points Nc for each limb. Whether to use

spline constraints or cost. If using constraint, constraint scaling for spline constraints. If

using spline cost, weight cs.

• µ, the log-barrier coefficient in lower-level optimization.

In our experiments, we manually pick the parameters N,dt, x̄v, x̄o, x̄h, P,Nc, µ, which can

be chosen based on the desired properties of the robot gait. For the rest of the parameters,

we run a grid search, and pick the set of parameters that generate the gait of highest quality.

3.4.4 Results on a horizontal terrain

In this experiment, the goal is to generate gaits for the Robosimian on a flat horizontal

sandy terrain while maintaining a desired forward torso velocity. The parameters (some of

which are from grid search) are: N = 181, dt = 0.05, Qv = 100.0,Qo = 0.01,Qh = 0.01, xv =
0.4, xo = 0.0, xh = 0.75, R = 10−5I, P = 60, cp = 0.1, µ = 10e−3, all in standard units. Instead

of using both the positions and orientations for the splines, we use only the orientations as

constraints without constraint scaling, and Nc = 30.
We use the Knitro NLP solver [92] for solving the TO. For all the experiments, we set the

feasibility and optimality tolerence to 10−3. All experiments are conducted on a standard

PC with a Xeon 20-core CPU. During experiments, we found that the optimized results are

sensitive to the initial guess. We first experimented with a trivial initialization, where the
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Figure 3.3: The cost and maximum constraint violation over the iterations for optimizing a
trajectory on the flat horizon terrain.

Terrain 0○ 2.5○ 5○ 7.5○ 10○ 12.5○ 15○ 17.5○ 20○ -2.5○ -5○ -7.5○ -10○ -12.5○ -15○ -17.5○ -20○ wavy 10○ NO

Mv 0.0010 0.0023 0.013 0.0012 0.013 0.0031 0.036 0.0054 0.29 0.0056 0.0013 0.014 0.0044 0.046 0.040 0.010 0.22
Mc 14.6 12.5 14.8 14.0 17.6 24.5 25.4 27.6 97.3 7.58 12.6 21.5 29.2 48.1 73.2 fail fail 26.73 35.2
Time (hr) 0.50 2.52 0.25 0.48 0.57 1.03 0.55 1.17 1.1 0.90 0.58 0.36 1.1 3.9 8.2 0.51 NA

Table 3.1: Optimized trajectory performance on different terrains (Mv: velocity error, Mc: cost
of transport, NO: Non-optimized)

robot stands still. The optimized trajectory shows the robot sliding and dragging its feet to

move forward, without ever lifting them off the terrain. To minimize manual tuning, we end

up using a simple trotting in place initialization, where the robot walks in place for 3 steps.

In particular, we manually design the trajectory, track the trajectory with a PID controller

at 500 Hz, down-sample the states and average the controls to obtain the trajectory with

dt = 0.05 s.
The cost and constraint violation over the iterations are shown in Fig. 3.3, while the

optimized trajectory is shown in Fig. 3.1. The performance metrics are Mv = 0.0023 and

Mc = 14.6, showing that the desired velocity is tracked very well. Visually, the robot has a

smooth trajectory with little jerkiness. This particular gait took 0.499 hr to compute.

Baseline comparison Next, we compare with 2 baselines: standard trajectory opti-

mization (iLQR) and reinforcement learning (RL). We use the open-source implementa-

tion of the iLQR algorithm [86] at https://github.com/anassinator/ilqr. For RL, we

tested open source implementation of the PPO [94] and TRPO [95] algorithms at https:

//github.com/openai/baselines. Default algorithm settings were used.

In iLQR, we use Jpath directly as the cost function, where the weights and parameters

are the same as our method. Tests indicated that iLQR needs a feasible initial guess and is
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numerically sensitive to the time step and planning horizon. Any combination that would

give a 9 s horizon would cause the algorithm to fail completely, and could only achieve

feasibility with a short horizon. Our tuning showed the best results at dt = 0.005 s and 0.25 s

horizon. We then apply iLQR in an online fashion, where the trajectory is re-planned after

executing each optimized control. Because of the short horizon, iLQR is only able to obtain

trajectories that shift the body slightly forward before tipping over.

For fairness of comparison, we implement a tuned PD joint controller and have joint

position command be the action space, instead of torque for RL. The observation space

includes the robot state, ankle poses, and the PD controller torques. The reward function is:

−10∥xv − 0.4∥2 − 0.2∥xo∥2 − 0.001∥a∥2 − 10−5∥u∥2 + 1.0, where a is a vector of the 4 feet angles

and u is the control. In addition, we terminate an episode when xh < 0.25 ∨ xh > 1.5 ∨ ∣xo∣ >
1.1∨∥a∥1 > 1.2, and give a termination reward of −10. The time step is 0.005 s and we run the

training for 1M time steps. Overall, results did not demonstrate stable gaits. The roll-out

trajectories from the trained controllers caused the robot to fall quickly, and terminated in

less than 50 time steps.

These comparisons demonstrate that locomotion on granular terrain is a challenging prob-

lem for standard trajectory optimization and RL due to its long time horizons and sensitivity

to initial guesses and action choices. In comparison, our method is numerically favorable for

long horizons and is fairly tolerant to infeasible initial guess for the NLP solver. However,

due to its long computation time it is only suitable for offline gait generation.

3.4.5 Results on different terrain shapes

Next, we consider different terrain shapes. We test planar terrains of different slopes,

ranging from -20○ (downward slope) to 20○ (upward slope), with 2.5○ apart, and a wavy

terrain. Our experiments find that steeper terrains are more challenging for the NLP solver.

However, since we already have an optimized trajectory on a 0○ terrain, we can obtain a

high-quality initialization for similar terrains with minimal effort. Using this idea, starting

from a 0○ terrain, we track its optimized trajectory on the next slightly steeper terrain and

use the tracked trajectory as initialization for this terrain. For the wavy terrain, we use the

gait generated on 0○ terrain as the reference trajectory during tracking. The parameters used

here are the same as the 0○ terrain, except for the optimizer’s parameters that are tuned

using grid search. The performance metrics of the optimized trajectories are summarized

in Table I. We also include the performance of a trajectory on the 10○ terrain where we

simply track the gait optimized on the 0○ terrain (denoted as 10○ NO). Selected optimized

and non-optimized gaits are also displayed in Fig. 3.2. Animated results on all terrains are
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available in the supplement video. Our method is able to find high-quality trajectories with

small velocity error, except for the 20○, -17.5○ and -20○ terrains (for the -20○ terrain, we use

the optimized gait on the -15○ terrain as reference during tracking), where the NLP solver

fail to converge on the later two terrains. This is because these 3 steep terrains are the most

challenging among all. We also observe that the steeper the terrain is, the more energy it

consumes to cover the same distance, which matches our intuition. It is interesting that

going downhill is actually more energy-consuming for the robot. In addition, looking at the

non-optimized trajectory in Fig. 3.2.b, the robot ankles would slip, as shown by the foot

position trace, which causes the robot to have much larger Mv and Mc. Meanwhile, the

optimized gait in Fig. 3.2.a avoids slippage by optimally orienting the feet when touching

the ground.

3.5 CONCLUSION

In conclusion, we propose a bilevel TO framework for generating locally optimized trajec-

tories with learned contact models. We demonstrate through our experiments that we can

generate high-quality trajectories offline with a small amount of parameter tuning effort. In

addition, by leveraging optimized results on easier tasks, we are able to find trajectories on

challenging terrains. One drawback is that we generate the trajectories offline for a specific

contact model, while there exist a wide variety of contacts in the real world, and any vari-

ation in the composition of a granular terrain would lead to a different contact model. In

future work, we could first generate a database of trajectories offline with different wrench

spaces and learn a model that generates trajectories given a contact model. During online

execution, we could first identify the contact model from gathering a small amount of data,

query a trajectory from the learned model, and execute it. This follows the general idea of

trajectory learning and meta-learning. In addition, we would like to test the trajectories on

a physical robot.
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CHAPTER 4: GRAY-BOX LEARNING FOR SIMULATION OF FORCE
RESPONSE MODELS FOR HETEROGENEOUS ELASTIC OBJECTS

This chapter presents a gray-box learning method for simulating contact with elastically

deformable objects. A point-based surface representation and a heterogeneous, nonlinear

force response model are learned from a robotic arm acquiring force-displacement curves

from a small number of poking interactions. A simulator then estimates displacement and

force response when the deformable object is in contact with an arbitrary rigid object. It does

so by estimating displacements by solving a Hertzian contact model, and sums the expected

forces at individual surface points through querying the learned point stiffness models as a

function of their expected displacements. Experiments on a variety of challenging objects

show that our approach learns force response with sufficient accuracy to generate plausible

contact responses for novel rigid objects.3

4.1 INTRODUCTION

Robotic manipulation of deformable objects has a number of applications, such as in-home

environments, cable routing, textile handling, handling packaging in automated warehouses,

and soft tissue modeling in biomedical settings, but it remains a topic of active research.

Common deformation simulation methods, such as finite element method (FEM) or mass-

spring modeling (MSM), require an object’s geometry and its material properties to be

represented by a volumetric mesh model. Mesh models are challenging to build from noisy

sensor data, and calibrating appropriate material constitutive parameters is a tedious, time-

consuming, and error-prone process that depends on an appropriate mesh topology and

constitutive equations. Data-driven approaches have been studied in robotic palpation of

biological tissue, where a robotic probe gathers a dense field of data to estimate tissue

stiffness and identify anomalies.

We envision that robots could use naturalistic data acquisition to model deformable ob-

jects, in which behavior is observed from a small number of interactions and the model is

improved continuously during interaction. Humans can very quickly generalize from the

data gathered during manipulation to predict plausible outcomes in vastly different scenar-

ios. This chapter takes preliminary steps toward providing robots with similar capabilities.

We take a gray-box approach that integrates machine learning with physics. This general

idea is appealing because learning from data can enhance physics modeling when the physics

3This chapter is reproduced from Yifan Zhu, Kai Lu, and Kris Hauser, ”Semi-Empirical Simulation of
Learned Force Response Models for Heterogeneous Elastic Objects”. In International Conference on Robotics
and Automation (ICRA) 2020.
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Figure 4.1: Flow of our method. A point interaction model of a deformable object is first learned
through data acquired with the system shown here after a small number of pokes. The model is
then used in a semi-empircal simulator that solves for the deformation and contact wrench with
an arbitrary rigid object. The color of the deformed object represents the amount of surface
deformation.

of certain phenomena are not well understood [2, 3, 4], when the parameters for the gov-

erning physics equations are hard to identify [6, 7], or when applying the physics equation

is computationally prohibitive [48, 96]. In our approach, the simulator 1) accepts a point-

based model of the object surface’s force response under displacements, which are learned

from data, and then 2) calculates a resultant contact wrench for a novel rigid object us-

ing analytical calculations. Our model is quite general, as its deformation response can be

heterogeneous and nonlinear. Moreover, the visuo-tactile model constructed by our method

can overcome camera calibration errors, sensor noise, and “fuzzy” objects with ill-defined

boundaries. It is important to note that we do not expect a robot to need to touch an object

hundreds of times during naturalistic interaction. Our experiments examine performance

under a tiny fraction of pokes as training data. Even with only a few touches, reasonably

predictive models can be learned, which suggests that our pipeline is promising for on-line

use in naturalistic interaction.

We evaluate this approach using an experimental testbed (Fig. 4.1) consisting of a robot
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arm equipped with a RGB-D camera, a tapered probe attached at the end-effector, and a

force-torque (F/T) sensor. Experiments show that our approach can learn a point deforma-

tion model that predicts force response 0.49N of root mean squared error (RMSE) over 5 test

objects with 10 interactions each. When making contact with novel rigid probes, which are

a line-shaped paddle and a cylinder, our simulator’s force prediction has 1.5N RMSE. This

accuracy is comparable to learned models obtained with the same number of interactions.

We also show an application of our method to planning for packing a rigid object on top of

a deformable object into a box.

4.2 RELATED WORK

Deformable object modeling has long been studied in various fields including computer

graphics, continuum mechanics, and biomechanics. An overview of the existing methods on

deformable object modeling can be found in Ref. [97]. It still remains a challenge to build

models that match real-world objects accurately both in deformation and force response.

Several researchers have studied the problem of building elastic models of real-world object

using experimental data. Frank et al. attempt to build homogeneous FEM models by first

collecting force probing data using a mobile robot arm, a thin probe, an F/T sensor and a

RGBD camera [98]. An error minimization approach is used to estimate the FEM model

parameters such that the simulations match recorded data. Boonvisut and Cavusoglu follow

a similar scheme to build FEM models for elastic objects under stretching [99]. Both methods

require tens of minutes to perform the error minimization, making it less likely to be used

online. Bickle et al apply error minimization to inhomogeneous, nonlinear FEM models [65].

Radial basis functions (RBF) are used to interpolate the strain-stress relationship in each

finite element, and error minimization optimizes the weights used for RBF interpolation

to match observations. Although being able to handle more complex materials, the error

minimization step is prone to being stuck in local minima and the data acquisition process

requires complex apparatus setup, including multiple cameras, carefully positioned and tuned

light sources, and drawing markers on the testing objects.

Empirical data have also been used to tune MSM and meshless methods. Deussen et al

use simulated annealing to estimate the elastic properties of an MSM object model, given

data from simulation experiments [100]. Burion et al solve a similar problem using a particle

filter [101]. Pauwels et al. build meshless models of homogeneous 2D foams whose shape

upon contact with a rigid object depends on a deformability constant. This constant is

estimated by error minimization of real-world data. Because the method only simulates

deformable shape, it is unable to predicte forces at contacts.
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A highly related topic is robotic palpation. Yamamoto et al use a robot equipped with an

F/T sensor to poke at discrete locations on flat phantom tissue to estimate the stiffness across

the object surface and find anomalies [102]. Salman et al. adopt a similar approach but select

the next poking location using Bayesian optimization [103]. Goldman et al. first design a

hybrid motion-force controller to follow cycloidal paths on a tissue surface to estimate the

shape, then palpate at discretized surface locations with multiple grid resolutions to measure

the impedance matrices across the surface [104]. Liu et al. map the stiffness by moving a

mechanical roller across the tissue with a robot arm [105]. While these works are able to

map the stiffness of heterogeneous tissues, force response is assumed to be linear.

4.3 POINT DEFORMATION MODEL LEARNING

Fig. 4.1 shows the flow of our overall system. The first stage of our system learns a visuo-

tactile model of the deformable object using data. We shall discuss the learning stage in

the current section, leaving the discussion of simulation for Section IV. We assume that the

object is elastic, quasistatic, and that interaction forces are dominated by normal deformation

rather than friction and shear deformation. We hope to relax these assumptions in future

work.

The point deformation model consists of an equilibrium surface model, and a force response

model. The equilibrium surface model is a set S of points x ∈ R9, with each point x =
[px, py, pz, r, g, b, nx, ny, nz], representing position, color, and (outward) normal, respectively.

The position and normal are represented in the world frame. The force response model is

denoted as f = y(x, d), where f ∈ R is force magnitude in the normal direction, x is a point

in S, and d ∈ R is displacement. Letting n = [nx, ny, nz] ∈ R3 denote the normal in x and

p = [px, py, pz] ∈ R3 the position, this map gives the force a point probe would feel in the

direction of n when the point is moved to position p − d ⋅ n.

4.3.1 Data Collection

Although our methods are applicable to naturalistic interactions, for the comparison pur-

poses in this chapter we employ a separate data acquisition stage similar to Frank et al [98]

to build a ground truth dataset. The deformable object is laid on a flat surface, and it is

assumed to return to its original position when pressed in the normal direction. If it is found

to move while pushed, then a central point on the bottom of the object is affixed to the table

using Velcro tape. In future work it may be possible to simply track the movement of the

object during acquisition. We include 5 different testing objects in our experiments, Sloth,
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Vest, Lamb, Shoe, and Bird, shown in Fig. 4.2a. Sloth and Bird are stuffed animals, Vest

and Shoe are clothing items, and Lamb is a piece of lamb leg consisting of muscle, fat, and

bone. Each object has varying stiffness across the object surface. The regions of interest

of the objects are the surfaces facing up when the objects are laid flat on a table, with the

exception that we use only the face region of the sloth due to poor visual perception on the

furry torso.

To build a 3D point cloud of the equilibrium surface, a wrist mounted RGB-D camera

is used. Some objects need a few scans from different angles to generate a complete point

cloud. Open3D [106] is applied to perform outlier removal and normal estimation.

To capture ground truth force response data, we randomly select a set of locations on the

object to be poked with a point probe, shown in Fig. 4.1. During experiments, we collect

data on a uniform grid, and randomly select among these locations to be training data, and

the rest to be testing data. To complete one probing action at a point x, we align the point

probe’s axis with the point’s surface normal. Starting at a user-specified distance from the

surface, the probe pushes in the negative normal direction at a constant speed of 2mm/s

until reaching a force threshold, which is set to 3-5 N in our experiments depending on the

overall stiffness of the testing objects. The amount of displacement and force in the normal

direction, measured by the wrist mounted F/T sensor, is recorded at 250 Hz. As a result,

our force measurements are quite sparse in the spatial features, while being quite dense in

force / displacement. One example of the collected data on the Lamb is shown in Fig. 4.2b.

If both the visual and tactile data have no error, then we would expect the force felt by

the point probe tip away from the object surface to be zero and positive otherwise. However,

this is often not the case. As shown in Fig. 4.4a, we often observe nonzero forces beginning

anywhere from -5 to 5mm of displacement. This is largely due to error in the calibration and

bias in the camera’s depth estimates, and further motivates the use of learning to correlate

visual and tactile data.

For validation purposes, we collect second and third sets of poking data with a line probe

and a cylindrical probe (capped at 3-14N, depending on the objects), shown in Fig.4.2a.

These are not used for training, but only for evaluation of how well our simulation model

can generalize from point probe data. We probe once at each location using the cylinder

probe, and three times with the line probe at each location with random orientation changes

(about the local probe x-axis). We also record the torque about the EE frame center. The

parameters of all three datasets are summarized in Table 1.
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(a) Sloth, Vest, Lamb,
Shoe, and Bird objects,
along with rigid probes
used in testing.

(b) Ground truth data on
Lamb, with color showing
force felt at d = 0.5 mm.

Figure 4.2: The objects and probes used in the experiments. Data is gathered using the point
probe, and the simulator generalizes force predictions to the line and cylinder probes.

Point Cloud Point Probe Line Probe Cylinder Probe
Sloth 67,923 121 363 121
Vest 62,318 116 348 116
Lamb 18,059 94 276 94
Shoe 32,408 96 192 96
Bird 41,515 116 315 116

Table 4.1: Statistics of Collected Data on the Testing Objects

4.3.2 Force Response Model Learning

The next step in our pipeline learns to predict force responses at different locations on

the object surface. Recent advancements in automated machine learning (AutoML) have

greatly reduced the amount of manual effort needed to select a regression model and tune

hyperparameters. We use the AutoML [107] package from scikit-learn [108] to perform the

regression tasks.

We compare performance of different types of regressors. The AutoML package searches

among ensembles of different types of regressors and preprocessors and runs until a user-

specified time limit is reached. We can also specify the type of regressors during AutoML

training to reduce the number of hyperparameters that need to be optimized, thus improving

training speed. Another option is to select an appropriate regressor directly, without relying

on AutoML to select the hyperparamters. In particular, we test the following methods: (1)

AutoML (Auto-M) trained for 360 s (2) AutoML with Extra Trees as the regressor type

(Auto-ET) trained for 30 s; (3) Adaboost (AB), Gradient Boosting (GB), Random Forest

(RF), and Extra Trees (ET), all trained using scikit-learn with default parameters. Fig. 4.3b

show the results on the Lamb model. Although single regressors can train a model in less

1 s, Auto-ET generally achieves the best results in 30 s. If Auto-M were to be given more
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(a) Testing error on each object using Auto-
ET, with varying training set size.

(b) Comparing testing error between regres-
sors, over all objects.

Figure 4.3: Breakdown of learning curves for learning force response models. Regressors are
trained over 10 sampled subsets of the ground truth dataset, and plots show RMSE mean and
variance across samples.

(a) Collected force vs d at one
point on Lamb.

(b) 2 locations (c) 5 locations. (d) 10 locations.

Figure 4.4: Collected force-displacement curve at one point and force predictions on the Lamb
object, learned with different numbers of poking locations. Poking locations are indicated as circles,
colored by the true force. d is set to be 0.5mm. Because of camera bias, there is already a significant
amount of force at this depth. [Best viewed in color]

training time, it could potentially learn a better model, but doing so would require hours or

even days of training. We settle on Auto-ET for the rest of the chapter given its balance

between speed and accuracy on our dataset. The resulting force predictions that evolve after

2, 5, 10 locations are used as training data for a 0.5mm displacement on Lamb are shown

in Fig. 4.4.

Results with Auto-ET on all 5 testing objects are shown in Fig. 4.3a. The Shoe and

the Vest are the hardest to learn because they are not completely elastic and are made of

composite materials, resulting in significantly varying stiffness across their surface.

Prediction speed per point varies with the query size, because of query overhead. With 1

point in each query, it takes ≈17ms per point, while with 10,000 points per query, it takes

≈0.015ms per point. Also, prediction speed is not directly related to the number of training

points.
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(a) A point indentation moves nearby
points on the deformable object.

(b) Displaced points calculated by the
collision detector (red) vs actual displace-
ments (blue).

Figure 4.5: Definitions used in the surface deformation model.

4.4 GRAY-BOX SIMULATOR

The second phase of our pipeline estimates reaction forces between the deformable object

and a contacting rigid object. The rigid object is represented as a 3D surface meshM defined

in the global frame. The contact detector determines if it is in contact with the deformable

object’s equilibrium surface model S, and if so, which points must be displaced to resolve

the contact. The contact force solver then computes the 3D reaction force and torque and

the deformed shape of the object.

4.4.1 Contact Force Solver

Classic Herztian contact theory predicts that displacement at a surface point on a de-

formable object will cause neighboring surface points to move in a manner described by

a function of distance and material properties (Fig. 4.5a). Hence, we cannot simply sum

the forces caused by each independent point displacement, but instead have to account for

correlations in displacement. We assume that normal forces and displacements are the dom-

inant effect, and experiments on our object set suggest this assumption is reasonable for

normally-displaced objects.

Let di denote the nominal displacement of a surface point at a contact patch, we assume

that it consists of both displacement caused by neighboring point displacement and that

actually contributes to the total force, which we call actual displacement and denote as

d̃i. We solve for non-negative actual displacements that are no greater than the nominal

displacements. A smaller nominal displacement would indicate penetration, while a negative

actual displacement would cause the deformable to apply a negative (pulling) force on the

rigid object at that point (Fig. 4.5b).

Nominal Displacement Calculation To calculate nominal displacements of the de-

formable object’s surface points we use collision detection and estimate penetration depths.
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Figure 4.6: An illustration of how the nominal displacements are calculated for a polyhedral rigid
object.

To do so, we first discretize the surface of the rigid object by placing equally spaced points

on edges and 2D grids on facets based on a user-selected discretization. Via experimen-

tation, we found that simulation results are relatively insensitive to the selection of this

discretization, and we use a 3mm resolution for all experiments.

Next, we find the pairs of rigid surface points and the deformable surface points that

will be touching after deformation and the nominal displacement of the deformable surface

points. Point correspondence is calculated by projecting all the points to a 2D plane and

performing nearest-neighbor searches. We let a be the approach direction of the rigid object

and the normal of the projection plane, shown in Fig. 4.6. To better approximate the shape

of the underlying continuous surface, we average the nominal displacements of the the 3

nearest deformable surface points for each rigid surface point. Each nominal displacement

is calculated according to

di = −(prigidj
− pdeformablei

)T ⋅ ndeformablei , (4.1)

where pdeformablei
,ndeformablei ∈ R3 are the equilibrium surface position of point i and its

associated normal. We average the equilibrium positions and nominal displacements of the 3

points to obtain the estimated equilibrium surface point and displacement, which we refer to

as q and d. By keeping only the points with d > 0, we have N pairs of rigid surface points and

its corresponding estimated equilibrium surface points along with nominal displacements.

Force Solving The force solver uses the nominal displacements calculated above combined

with an indentation basis function to compute the actual displacements. The shape function

is defined as follows. For each pair of points on the deformable object, we define a shape

function g(r) ∶ R→ R to describe the correlation of a point indentation on its neighborhood.

Here r is the Euclidean distance between 2 points on the equilibrium surface, and we use
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the inverse function:

g(r) = c/(c + r) (4.2)

g(r) describes an inverse relationship between points’ relative displacement and equilibrium

surface distance, which matches the Hertzian theory. The constant c > 0 is picked by obser-

vation. However, for future work, we could determine this constant using a camera tracking

the shape of deformation during poking. While this constant may actually vary across the

object surface, we keep it constant across the object in this chapter.

By calculating the relative distance ri,j between all pairs of deformable points qi and qj

in collision with the rigid object, we obtain a linear complementary problem (LCP) relating

nominal and actual displacements:

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

⋮
dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(r1,1) g(r1,2) . . . g(r1,n)
g(r2,1) g(r2,2) . . . g(r2,n)
⋮ ⋮ ⋱ ⋮

g(rn,1) g(rn,2) . . . g(rn,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̃1

d̃2

⋮
d̃n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3)

0 ≤w ⊥ [d̃1, d̃2, . . . , d̃n]T ≥ 0,

where the subscripts denote the indices of the deformable surface points in collision. When

there are not any duplicated points, i.e. g(ri,j) ≠ 1 except for i = j, this symmetric matrix is

invertible. We solve the LCP by iteratively assuming equalities, solving the system of linear

equations by matrix inversion, and removing the points with negative actual displacements.

From the actual displacements we sum the forces predicted by the point deformation model

to obtain the contact wrench. Given the Nfinal points with positive actual displacements,

the total response wrench (Ftotal, τtotal) on the object are calculated as follows:

fi = y([qi, di]) − y([qi, di − d̃i])
Ftotal = ΣNfinal

i=1 fi ⋅ ni

τtotal = ΣNfinal

i=1 (r̃j) × (fi ⋅ ni),
(4.4)

where r̃j is the vector from the torque center to the corresponding rigid body point prigidj
.

To predict the displacement of the entire object, not only the points in contact, we sum

up contributions from the shape function over every positive actual displacement.
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Figure 4.7: Predictions errors of our simulator on novel rigid objects and that of pure data-driven
models. Errors on different objects are shown in different colors. We also include the errors of the
point models used in predictions as a reference.

4.4.2 Experiments

Throughout this section, we use the point deformation models trained with Auto-ET and

data from 10 poking locations. All implementation is performed in Python code with the

Numpy package for linear algebra, and all timing is conducted on a desktop PC with an Intel

i7 3.8GHz processor.

Simulation accuracy for Line and Cylinder contact Fig. 4.7 shows evaluation of our

simulator with line and cylinder probe contact in predicting 3D force and torque vectors.

The simulator prediction errors are compared to pure learning using the correct geometry,

trained directly on 10 pokes from the ground truth line and cylinder probing data, where

Auto-ET is also used as the regressor. We notice that the actual displacements calculated

could exceed the range of displacements in the point training data. We simply extrapolate

the training data following the estimated force-displacement slope to incorporate all possible

queries from the simulator. Overall, our simulator performs slightly worse than pure learning,

better on Lamb and Bird, and worse on Vest and Shoe. We believe this is mainly due to

the fact that Vest and Shoe are made of composite materials with a mixture of elastic and

inelastic components. As a result, shape functions approximate the deformation of these

objects sub-optimally and lead to errors in the simulator. The key advantage of our method

is that we do not need to re-acquire a new training set, and we can also predict force response

for different rolls and pitches of the rigid objects, which are not included as features in the

learning-only training set.
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(a) Contact with a
line probe.

(b) Robot packing setup.

Figure 4.8: Simulation experiments, Lamb object.

(a) Bird
probed by a
cylinder probe.

(b) Vest
probed by a
cylinder probe.

(c) Lamb probed
by a line probe.

(d) Shoe probed
by a line probe.

(e) Sloth probed by a line
probe.

Figure 4.9: Simulation of the line and cylinder probes poking straightly at all 5 experiment
objects, with the numbers indicating the amount of probe displacements. The objects are colored
with the displacements of the surface points, caused by the probes. [Best viewed in color]

Simulation Visualization We illustrate our simulator by visualizing the simulation of

a line or cylinder probe poking straight at different objects, resembling the data collection

process in Section III.A. An example is shown in Fig. 4.8a. The simulation frames are

displayed in Fig. 4.9. As the probes penetrate deeper, the calculated actual displacements

also increase, thus deforming the entire surface more significantly, calculated by the shape

function. We can see grooves on the Lamb, the Bird, and the Sloth that fit the probe

geometry at deep penetration. The Shoe and the Vest are stiffer objects, with c in the

shape function much greater than the other 3 objects. As a result, the grooves are harder to

observe.

Application to a Packing Problem We consider a simple packing problem as an illus-

tration of our approach, shown in Fig. 4.8b. Given a rigid box with a deformable object

(the Lamb) already packed, we would like to know if the robot can pack another rigid item

(a sphere, with diameter = 40mm and discretized into 150 surface points) into the box. In

particular, we would like to know at what positions in the box the sphere can be placed such
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(a) The minimum height at which the
rigid sphere can be packed under force
threshold 2N.

(b) Computation time vs number of con-
tacts, showing total time (ttotal), dis-
placement calculation (td), collision de-
tection (tc), and point model queries
(tm).

Figure 4.10: Results from the packing planning problem.

that its interaction force with the deformable object does not exceed 2N. We perform a grid

search over the x-y-z position of the rigid sphere centroid inside the box, where z starts with

the maximum allowed height in the box and finishes the search in the negative z direction

once the interaction force limit is exceeded, shown in Fig. 4.8b. A plot of minimum possible

height of the sphere on the x-y grid is shown in Fig. 4.10a.

On average in this experiment, a contact reaction force query takes 0.086 s. Each query

consists of 0.0738 s of collision detection, 0.010 s of querying the point model, and 0.0017 s of

LCP solving by our simulator. The average computation time as a function of the number

of detected contact points m is plotted in Fig. 4.10b. The time for LCP increases cubically

with m, because it mainly involves inverting a dense matrix. The time for querying the

point model stays somewhat constant. There is a lot of room for improvement in speed,

including implementation in a compiled language, better collision detection algorithms [109],

and parallelization.

4.5 CONCLUSION

The chapter proposed a 2-stage gray-box framework to learn and simulate the force re-

sponses of heterogeneous elastic objects. In the first stage, a point deformation model of a

testing object is learned via a robot arm poking at the object a few times. In the second

stage, a simulator predicts the contact wrench between the deformable object and a novel

rigid object by integrating analytic calculation and the learned point model to obtain the

expected restoring forces at a series of contact points and summing them.

For future work, we would like to relax several assumptions made. First, learning and
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generalizing shear and friction forces with small numbers of touches is an open problem.

Perhaps the deformation and force response of a novel deformable object can be bootstrapped

by transfer learning from an object that has already been acquired. We would also like to

learn the deformation and force response of an object while it is undergoing gross movements,

separating the rigid body and elastic components of the movement. This could also be

extended to handle plastic deformation. Finally, we would like to enhance our simulator

to handle combined rigid and elastic deformation, as well as contact between deformable

objects.
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CHAPTER 5: AUTOMATED HEART AND LUNG AUSCULTATION IN
ROBOTIC PHYSICAL EXAMINATIONS

So far in this thesis, learning is done in a supervised manner, where a small labeled dataset

is provided to a machine learning algorithm. This chapter instead presents an active sens-

ing approach where the robot plans information-gathering paths. The specific application

is auscultation, where this chapter demonstrates the first implementation of autonomous

robotic auscultation of heart and lung sounds. To select auscultation locations that generate

high-quality sounds, a Bayesian Optimization (BO) formulation leverages visual anatomical

cues to predict where high-quality sounds might be located, while using auditory feedback

to adapt to patient-specific anatomical qualities. Sound quality is estimated online using

machine learning models trained on a database of heart and lung stethoscope recordings.

Experiments on 4 human subjects show that our system autonomously captures heart and

lung sounds of similar quality compared to tele-operation by a human trained in clinical aus-

cultation. Surprisingly, one of the subjects exhibited a previously unknown cardiac pathol-

ogy that was first identified using our robot, which demonstrates the potential utility of

autonomous robotic auscultation for health screening.4

5.1 INTRODUCTION

Infectious diseases pose substantial risks to healthcare providers and there have been world-

wide initiatives to use robots and automation to help combat the COVID-19 pandemic [110].

In particular, performing physical examinations with robots has potential to reducing the

risks to healthcare providers by minimizing person-to-person contact. Moreover, robotic

health screening can also help promote preventative care and affordable routine checkups,

particularly in rural, remote, and low-resource communities.

Motivated by the benefits of automating physical examinations, this chapter explores the

task of auscultation, i.e., listening to heart and lung sounds via a stethoscope, which is

an important screening procedure that is performed at regular checkups and for patients

exhibiting respiratory and cardiac symptoms. This chapter demonstrates the first robotic

system capable of performing automated heart and lung auscultation, based on the TRINA

robot shown in Fig. 5.1. The design of a newer version of this robot, also name AVATRINA,

is discussed in detail in Chapter 8. Prior tele-medicine robotic systems have been built for

performing auscultation and echocardiography [111, 112] through tele-operation. Compared

4This chapter is reproduced from Yifan Zhu, Alexander Smith, and Kris Hauser, ”Automated Heart and
Lung Auscultation in Robotic Physical Examinations”. In IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 4204-4211, April 2022.
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Figure 5.1: The TRINA robot used in the experiments, with the zoomed-in view of the stetho-
scope on the right. The stethoscope frame is shown in green, and the patient scan point cloud in
orange. The design of a newer version of this robot, also name AVATRINA, is discussed in detail
in Chapter 8. [Best viewed in color.]

to tele-operation, automated medical exams offer several potential benefits including lower

operation time, a shorter learning curve for physicians, and reduced cognitive load and

tedium. Auscultation is, however, a challenging process to automate. The quality and

interpretability of sounds produced by the anatomical structure of interest at the skin surface

is highly variable and depends on the location, pressure, and steadiness of the stethoscope.

If the stethoscope is placed at a poor location in relation to the patient’s internal anatomical

structures (e.g., over a rib or deep layers of fatty tissue), the sound may be attenuated or

muffled in frequencies that are critical for diagnosis. A human doctor uses visual, tactile,

and audio feedback as well as anatomical information and diagnostic expertise from prior

medical training to localize informative listening locations.

The goal of our system is to record high-quality sounds that a human doctor will listen to,

so the robot’s aim is to provide sounds of diagnostic utility rather than to perform diagnosis

itself. First, our system captures a 3D point cloud scan of the patient, registers a human

body model, estimates the locations of key anatomical landmarks, and produces a prior

map of high-quality auscultation locations. It then adopts informative path planning using

audial feedback to adaptively search over the region of interest for a high-quality auscultation

location. Audial feedback relies on sound quality estimators trained on a database of heart

and lung stethoscope recordings. To determine the optimal sensing location we formulate a
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Bayesian Optimization (BO) problem where the unknown sound quality field is estimated

as a semi-parametric residual Gaussian Process (SPAR-GP) model, with a prior map that

depends on latent translation offset and sound quality scaling parameters.

Experiments on 4 healthy male human subjects demonstrate that our system performs

heart and lung auscultation automatically, and locates sounds of similar diagnostic quality

and execution time as tele-operation by a human trained in auscultation in medical school,

and trained to use the robot by the investigators. The procedure is reliable and largely

required no supervision, except for one subject where a perception error required anatomical

landmarks to be input manually before ausculation. Although each subject reported good

health and no respiratory or cardiac ailments, in a surprising discovery one subject exhibited

a heart murmur that was identified during these experiments. The subject was thereafter

referred to a physician for follow-up tests.

5.2 RELATED WORK

5.2.1 Robotic Remote Auscultation and Sonography

Tele-nursing robots consisting of a mobile base and arms have demonstrated a variety of

nursing tasks including handovers, vital signs monitoring, disinfection, and auscultation [113,

114, 115, 116]. Robotic technologies employed in the fight against COVID-19 and infectious

diseases are reviewed in recent surveys [117, 118].

Giuliani et al. develop a robot and tele-operation user interface for echocardiography [111].

Several works have studied performing robot remote lung sonography using the MGIUS-

R3 robotic tele-echography system produced by MGI Tech Co, Ltd. [119, 120, 121, 122].

Marthur et al. develop a semi-autonomous robotic system to perform trauma assessment

remotely, where the locations on a patient to be assessed are identified automatically via

perception and sonography is performed with tele-operation [123]. Instead of tele-operation,

our proposed method performs auscultation fully automatically, which has the potential to

reduce physician learning curve, cognitive load, and tedium. On a level of autonomy (LoA)

scale from 0 (Full Manual) to 5 (Full Autonomy) [124], our system achieves a level of 4

(High-level Autonomy) because the robot autonomously performs the procedure while an

operator monitors and intervenes when necessary.
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5.2.2 Informative Path Planning

Our problem falls under the category of informative path planning (IPP), where the robot

plans information-gathering paths given a probabilistic model of the quantity of interest.

Sensor placement, active learning, and adaptive sampling problems can be seen as special

instances of the IPP problem. IPP has been applied to a variety of robotics applications

such as object tactile exploration [125], palpation-based tissue abnormalities detection [103,

104, 126], inspection and environment mapping [127, 128, 129].

Most related to ours are the works by Salman et al. [103] and Ayvali et al. [126]. Salman

et al. propose both discrete and continuous trajectory search algorithms for robots to search

for the boundaries of tissue abnormalities, i.e, high stiffness, through robotic palpation.

Gaussian process (GP) regression is used to model the distribution of stiffness. Four methods,

including BO, active area search, active level sets estimation, and uncertainty sampling are

compared, among which active area search had the best performance. Ayvali et al. also

perform robot palpation to detect tissue abnormalities, using GP regression and BO. To

inject user prior knowledge of the locations of tissue abnormalities, they add a decaying

utility function whose value peaks at the user-provided locations to the acquisition function

of BO. In contrast, our work adopts a discrete search BO to the auscultation setting, and

introduces two technical contributions to make auscultation more practical. First, visual

registration of anatomical landmarks eliminates the need for manual input to specify priors,

except as a backup for registration failures, and second, the use of our SPAR-GP model

leads to faster convergence than pure residual GP models.

Belonging to the family of semi-parametric regression methods, SPAR-GP performs func-

tion approximation with a combination of parametric functions and Gaussian process. In

robotics, similar models have been applied to system identification of linear and nonlinear

dynamical systems [15, 16, 130], but to our knowledge semi-parametric models have not been

adopted in the informative path planning setting.

5.3 METHOD

The overview of our method is shown in Fig. 5.2. In the offline phase, we build a dataset of

heart and lung stethoscope recordings of humans with labeled sound qualities and train heart

and lung sound quality estimators (Sec. 5.3.2). The goal of our system is to generate high

(estimated) quality heart and/or lung recordings by placing a stethoscope at anatomically

relevant portions of a patient’s chest and back, while keeping the number of auscultation

actions small. These estimators are the only feedback used by the system during the online

exam; we do not assume human raters are available to provide ground truth.
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Figure 5.2: The workflow of our method.

During the online phase, the robot first performs visual registration of the patient to a

reference human model with labeled clinical auscultation locations. An observation model

prior is constructed based on the visual registration (Sec. 5.3.3), which encodes anatomical

prior information about expected sound quality. Finally we use BO (Sec. 5.3.1) to select

locations to auscultate to find the best sounds utilizing both the learned sound quality

estimators and prior information from visual cues. These targets are then used for motion

control (Sec. 5.3.4).

5.3.1 BO Formulation

We use BO to search adaptively for an auscultation location that yields a high quality

sound within a specified anatomical region. We denote sound quality estimators for heart and

lung sounds as es(r), where s is an anatomical structure (heart or lung) and r is a stethoscope

recording. The BO approach computes a probabilistic estimate of the unknown field es(r(x))
across the patient surface using a SPAR-GP model, which is a sum of the observation prior

and the GP. An acquisition function is optimized to yield the new auscultation location.

Given a new observation, the estimate is re-fit to the data and the process repeats until a

termination criterion is met.

SPAR-GP A GP models an unknown function f as a collection of random variables f(x)
which are jointly Gaussian when evaluated at locations x. A GP is fully specified by its

mean function m(⋅), which we set to 0, and covariance function k(⋅, ⋅):

f(x) ∼ GP(m(x), k(x,x′)) (5.1)

Given n existing observed function values ȳ = [y1, . . . , yn] at x̄ = [x1, . . . , xn], GP regression
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predicts the function values at new point x∗ as a Gaussian distribution:

P (f(x∗)∣x̄, ȳ, x∗) ∼ N (kK−1ȳ, k(x∗, x∗) − kK−1kT ) (5.2)

Here,

K =
⎡⎢⎢⎢⎢⎢⎢⎣

k(x1, x1) ⋯ k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, kn)

⎤⎥⎥⎥⎥⎥⎥⎦
+ σ2I (5.3)

k = [k(x∗, x1), ⋯, k(x∗, xn)] , (5.4)

where σ is the standard deviation of noise at an observation.

For each anatomical location, the observation model is a sum of a parametric prior mean

function µθ(x) and a GP residual function fs(x): es(r(x)) ≈ µθ(x) + fs(x). Since the GP

models residuals with respect to the prior, we subtract the prior from the sound quality

as the GP observations: yi = es(r(xi)) − µθ(xi). Here we further denote the history of the

estimated sound qualities as ē = [e1, . . . , en].
Although the anatomical reference provides sound quality peaks assuming an average

human and perfect registration of anatomical landmarks, the robot’s prior should capture

the uncertainty in visual registration error and the effect a patient’s body type has on the

magnitude of the overall sound quality. Therefore, we make the prior µθ a parametric function

of the latent variables θ representing the translation offset and sound quality scaling, and infer

θ from observed sound qualities. In particular, a reference quality map µo(x) is first generated
from visual registration and θ is initialized to θo, which includes zero translation offset and

scaling of 1. The exact composition of the prior mean function is deferred to Sec. 5.3.3. θ

is inferred after each reading using the history x̄ and ē with maximum a posteriori (MAP)

estimation. We use a likelihood function L(θ∣x̄, ē) =∏ g(ei∣µθ(xi), σ2), where g(⋅∣µθ(xi), σ2)
is the probability density function of the Gaussian distribution N (µθ(xi), σ2). The prior of

θ, h(θ), follows a multivariate Gaussian distribution N (θo,Σ). We solve the MAP estimation

problem by maximizing the posterior, using a standard numerical optimization solver:

θ∗ = argmax
θ
L(θ∣x̄, ē)h(θ) (5.5)

BO Letting A be a region of interest on the patient surface near structure s, BO aims to

solve:

max
x∈A

es(r(x)) (5.6)
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Since heart and lung sounds need to be listened separately and there are usually multiple

parts of the anatomical structures that are of interest, we solve Eqn. 5.6 for each anatomical

structure s separately, and for each s sequentially for their regions of interest. We also share

the same GP across the entire chest or back of a patient for the same s.

In each iteration of BO, an acquisition function is used to determine the next location to

observe the data. Two popular choices are expected improvement (EI) and upper confidence

bound (UCB). Let the posterior mean and variance of the GP be µȳ(x), σ2
ȳ(x), then EI is

defined as:

EI(x) = E[max(0, µθ(x) + µȳ(x) − e∗)], (5.7)

where e∗ is the best observed quality so far, and EI can be calculated in closed form [131].

UCB is defined as:

UCB(x) = µθ(x) + µȳ(x) + βσȳ(x), (5.8)

where β is an exploration weight that regulates how much bonus is given to uncertainty in

the prediction.

The overall algorithm is outlined in Alg. 5.1. For each iteration in each region, a point with

the largest acquisition function value is first chosen to be observed, where ξ(x) represents
the acquisition function, and the quality is estimated. In particular, A contains sampled

points on a patient surface, and the maximization is performed in a brute force fashion by

calculating the acquisition function values across all points in A and selecting the maximum.

In addition, the same point is observed at most once. Then we add the estimated qualities to

the history and update the prior mean function by solving the MAP estimation, after which

the residuals for GP are calculated, observations are added, and the GP is re-fit. For the

termination criteria, we allow early termination if the estimated quality in a region is above

an adequacy threshold for making a diagnosis. We also set the budget Nmax to a reasonable

number of auscultations per region to limit the maximum time of the procedure.

5.3.2 Sound Quality Estimator

Dataset We first collect lung and heart stethoscope recordings of various qualities with

TRINA from the researchers on this project. Each recording lasts 10 s, and we vary the

locations on the subject’s chest, whether or not the subject is wearing clothing, and whether

the subject is taking a deep breath. 80 recordings are collected each for heart and lung

sounds. The ground truth qualities of the recordings were labeled by 4 medical school

students who have undergone auscultation training in a Liaison Committee on Medical Edu-

cation (LCME)-accredited medical program and have been applying their auscultation skills
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Algorithm 5.1: Bayesian Optimization Auscultation

Input: Structure s (heart/lung), prior µθ, regions A, max iterations Nmax;
Initialize x̄ = {}, ȳ = {}, ē = {};
for all regions A near s do

for k = 1, ...,Nmax do
xk ← argmaxx∈A ξ(x) ;
if region termination criteria met then

Go to next region;
else

Auscultate at xk, obtain sound quality ek;
Set x̄← x̄ ∪ {xk}, ē← ē ∪ {ek};
θ ← argmaxL(θ∣x̄, ē)h(θ);
Set ȳ ← ȳ ∪ {ek − µθ(x)};
Re-fit GP;

end

end

end
return recordings of max quality in each region;

in clinical settings for at least one year. We note that prior studies suggest that the cardiac

examination skills of trained medical school students are no worse and may even be better

than those of experienced doctors [132]. Each label is a score between 0-1 with increments of

0.125 based on the rating guidelines provided by Grooby et al., where 0 means no detectable

heart or lung signal, and 1 means clear heart or lung sounds with little to no noise [133]. A

recording of poor quality either contains weak signals or has noise that obscures the signals.

The noise typically comes from the stethoscope contacting a patient and heavy breathing

sounds obfuscating heart sounds.

We use intra-class correlation (ICC) [134] to measure the inter-rater reliability of the labels.

We obtain the ICC estimates using a mean-rating, absolute-agreement, 2-way mixed-effects

model, using the Pingouin package at https://pingouin-stats.org/. The calculated ICC

estimates are 0.925 and 0.679, respectively for heart and lung, which correspond to excellent

and moderate agreement [134]. The average variances for the 4 ratings of each stethoscope

recording’s quality are 0.0163 and 0.0400 for heart and lung respectively. The max variances

are 0.0938 and 0.151 for heart and lung. The average of the 4 ratings of each recording

is used as the quality label. We further augment the dataset with 5 synthetic recordings

of pure noise with varying amplitudes and labeled with quality 0, which emulate erroneous

conditions like placing a stethoscope on irrelevant parts of the body, rubbing the stethoscope,

bumping the stethoscope, and failing to make contact.
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(a) Heart (b) Lung
Figure 5.3: Trained heart and lung sound quality estimator predictions on the testing set, where
the horizontal axis is the predictions and the vertical axis the ground truth labels.

Feature Extraction We follow the method of Grooby et al. for heart and lung qual-

ity classification and modify it for regression. For each sound recording, we apply noise

reduction [135], band-pass filter with cutoff frequency 50-250Hz for heart recordings and

200-1000Hz for lung recordings, and extract for all sound recordings the top features listed

by Grooby et al. In particular, we use the top 5 features for heart sound and the top 2-6

features for lung sound (top 1 feature for lung is not used due to the lack of open-source

code). The extracted features are then subsequently used for training the estimators.

Learning We use the TPOT AutoML algorithm [136] to train the heart and lung sound

quality estimators that take in the extracted features and predict the sound qualities. We

split the dataset and use 25% as testing data. For the TPOT algorithm, we set generations

= 100, population size = 100, and set the rest of the hyperparameters as default. We achieve

a 0.0945 and 0.0733 mean absolute errors (MAE) on the testing set of heart and lung sounds

respectively. The predictions on the testing set are shown in Fig. 5.3.

5.3.3 Visual Registration and Sound Quality Prior

Doctors are trained to auscultate typical points on a patient body as illustrated in Fig. 5.4,

both for optimal sound quality and ability to diagnose abnormalities on specific structures

of the heart and lung. The goal of visual registration is to locate these points on a patient,

both to define regions for ausculation and to obtain a prior observation model. Note that

we do not track the patient body after this initial registration is performed and assume that

the patient body does not move significantly during auscultation. Small movements are

accounted for by the motion controller (Sec. 5.3.4)
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Reference Model Patient Scan Registration Result

Figure 5.4: Left to right: labeled reference models, subject (“patient”) scan point clouds, and
result of nonrigid registration. Auscultation locations for heart are labeled in red, and lungs in
green. [Best Viewed in Color.]

Visual Registration We first manually label a reference human mesh model with auscul-

tation locations, which we register onto a 3D point cloud of a patient captured with a RGB-D

camera. In all of our experiments, we downsample the captured point cloud with a voxel

size of 0.01m, which strikes a balance between computational time and enough coverage by

using a stethoscope whose diameter is approximately 0.02m. We first perform rigid regis-

tration with RANSAC [137] followed by ICP [138] to provide a good initial alignment, then

nonrigid registration with nonrigid ICP proposed by Amberg et al. [139], where a local affine

deformation model is used. The initial and final results of one case of visual registration

is shown in Fig. 5.4. The regions of interest on the patient surface are limited to a certain

distance R from the estimated clinical auscultation locations (Fig. 5.5, green circles).

Point Cloud Projection and Sound Quality Prior We project the point cloud onto

the coronal plane of a patient, and BO only searches amongst locations on this projected

plane. The third dimension (height) of the point cloud is associated with each projected point

to de-project selected locations on the plane back into 3D space. As discussed in Sec. 5.3.1,

to obtain the prior of the observation model, we first generate a reference quality map

µo(x), where we place a negative exponential function at each of the registered auscultation
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Front Heart Front Lung Back Lung

Figure 5.5: Observation model priors for heart and lung on the front of the patient and lung on
the back. Each region A is denoted with green circles. [Best viewed in color.]

locations in the projected coronal plane. An example of the initial observation model prior

is shown in Fig. 5.5. The latent parameters θ = [tx, ty, c] is initialized to θo = [0,0,1], where
tx and ty are the translation offsets on the projected plane, and c the quality scaling term.

5.3.4 Motion Control

The motion control system generates safe interaction between the stethoscope and the

patient, keeping the interaction force at a desired auscultation force Faus. According to both

Nowak et al. [140] and our observations in experiments, auscultation force Faus has a small

effect on sound qualities. We set Faus = 7N , which is both comfortable for human subjects

and provides good sound qualities in practice. The robot starts at a manually defined

home configuration qhome. For a location x selected by BO, we first get the point p on the

patient point cloud where x is projected from. To auscultate at p, the robot first moves the

stethoscope to an initial position po that is a distance do = 0.08m from p in the direction

of outward surface normal np at p to account for perception uncertainty, shown in Fig. 5.1.

In particular, we set the target position of the stethoscope frame to be po, with the z-axis

aligning with −np and solve for the target robot configuration q0 with inverse kinematics

(IK). The robot moves from qhome to qo linearly in the Cartesian space, following maximum

linear and angular velocities vmax = 0.065m/s and ωmax = 1.0 rad/s. Starting from po, the

robot moves the stethoscope in the −np direction at constant speed s = 0.03m/s, during

which we also adopt impedance control for enhanced safety, where we utilize the wrist-

mounted force-torque sensor on the arm as wrench feedback and control the stethoscope as

a mass-spring-damper. The robot keeps moving the stethoscope until the external force in
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the np direction reaches Faus, at which point we record the stethoscope audio for 10 s and

use the learned estimators to estimate the sound quality. After auscultation is finished, the

robot first moves back to qo, waits for BO to give the next auscultation location, and moves

to the next initial position with a linear Cartesian movement under velocity limits.

5.4 RESULTS

Throughout the experiments, we use the TRINA robot shown in Fig. 5.1. TRINA is a

mobile bimanual manipulator with various visual sensors and swappable end-effectors. In

this project, we use a Thinklabs digital stethoscope mounted on the left arm with firm

foam as sound insulator. We use the Intel Realsense L515 RGB-D camera on TRINA to

capture point clouds. For both the simulation and physical experiments, we use the squared

exponential covariance function for GP with length scale = 0.02. We chose this length based

on our observations of how sound qualities correlate across the surface of the body.

5.4.1 Simulation Experiment

First we compare the performance of different acquisition functions, and evaluate the

efficacy of SPAR-GP. To do this, we compare the results of the BO algorithm under visual

registration error and patient overall sound quality variations. We first generate a ground

truth heart quality map across the patient chest in a similar fashion as the observation model

generation in Sec. 5.3.3, with the same shape as Fig. 5.5 but having the negative exponential

functions placed at ground truth locations. Then for each setting of acquisition function and

prior observation model, we generate a prior by randomly shifting and scaling the ground

truth quality map and run the BO algorithm. In particular, the random shift (x,y sampled

independently) is uniform between -0.02m and 0.02m and the random scale is uniform

between 0.7 and 1.3. We run this 50 times and compare the average maximum observed

qualities across different regions under a given budget Nmax. Simulations are performed for

the heart prior only, giving a total of 4 regions. We disable early termination (i.e., Line 6 of

Alg. 5.1) in these experiments.

We set the GP observation noise α = 0.0417, and region radius R = 0.03m. The covariance

matrix Σ of the prior parameters θ is a diagonal matrix with entries σ2
tx = σ2

ty = 1.33e−4
(variance of the uniform random distribution of [-0.02,0.02]), and σ2

c = 0.03 (variance of the

uniform random distribution of [0.7,1.3]).

Results are summarized in Table I, where we compare 1) acquisition functions EI and

UCB with different β parameters under different budgets for each of the regions; 2) BO with
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Nmax = 3 Nmax = 10
Zero Fixed SPAR Zero Fixed SPAR

EI 0.432 0.434 0.549 0.622 0.620 0.638
UCB, β = 0.5 0.370 0.428 0.550 0.629 0.624 0.660
UCB, β = 1.0 0.421 0.423 0.559 0.632 0.628 0.660
UCB, β = 1.5 0.455 0.420 0.544 0.631 0.624 0.657

Table 5.1: Effects of BO parameters on max sound quality in simulation

Subject 1 Subject 2 Subject 3 Subject 4

Weight (kg) 95.6 57.4 60.5 120
Height (m) 1.84 1.82 1.81 1.83
BMI 28.2 17.3 18.5 35.8
Age 33 22 21 28

Table 5.2: Statistics of the 4 human subjects

GP under Zero prior, Residual-GP with Fixed prior, and SPAR-GP (SPAR) prior. Numbers

indicate the maximum sound quality over each region. SPAR-GP consistently outperforms

BO with fixed prior and no prior, particularly when the budget of observations is small. In

addition, there is no clear winner among the acquisition functions, so for the subsequent

physical experiments we use EI because it is parameter-free.

5.4.2 Physical Auscultation Experiments

We compare BO against two other baselines for a complete auscultation session that

includes both heart and lung. In RO baseline, the robot automatically auscultate at the

registered auscultation landmarks on the patient. In the DT baseline, a human tele-operates

the robot to auscultate the patient, shown in Fig. 5.6. We perform each of the three methods

once on 4 healthy male human subjects5, whose statistics are listed in Tab. 5.2.

Direct Teleoperation (DT) In the DT condition, an expert tele-operator performs aus-

cultation at the specified regions, and adjusts the position of the stethoscope until he/she

judges the sound quality to be good enough for making a diagnosis. The tele-operator is

one of the medical school students that labeled the stethoscope recording dataset, and the

tele-operator received tele-operation training on TRINA for 3 hrs prior to the experiments.

5This human subjects study was fully reviewed and approved by the University of Illinois at Urbana-
Champaign Institutional Review Board, with IRB#21849.
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(a) (b) (c)

Figure 5.6: (a) Tele-operator performing auscultation using VR headset and controllers. (b)
Automatic registration failed on the back of subject 4 due to difference in their body type from the
reference model. (c) Manual registration on the back of subject 4.

Tele-operation on TRINA is achieved via the Oculus Quest VR headset and controllers

(Fig. 7(a)), where the VR headset streams the stereo camera on TRINA’s head, and the 6D

pose of the stethoscope on TRINA is driven in velocity control mode to follow the velocity

of one of the VR controllers while a clutch button is depressed.

Bayesian Optimization (BO) For BO, we set the acquisition function to EI, Nmax = 4,
GP observation noise α = 0.0938 for heart and 0.151 for lung. Σ is a diagonal matrix with

entries σ2
tx = 2.12e−4, σ2

ty = 9.77e−5, and σ2
c = 0.03. In addition, We terminate early if sound

quality exceeds 0.5. This threshold was judged by the 4 raters as the minimum quality for

making a confident diagnosis.

The values for α correspond to the maximum inter-rater variance for each recording in

the quality estimator dataset. The values for R and Σ were determined empirically as a

function of estimated registration error. We estimate error using a public dataset of complete

human scans [141]. We select 30 male human mesh models that cover a wide range of body

types, with maximum, minimum, and average body mass index (BMI) 34.9, 17.8, and 26.5,

respectively. We manually label the nipples, segment the mesh to emulate a RGB-D scan,

and apply visual registration. The registration MAE error of the nipples is 0.0173m, and

the maximum error is 0.0389m, which we set as R.

Results Tab. 5.3 breaks down the time spent on visual registration (Reg.), the total

amount of time spent during the auscultation session (Total), the total number of aus-

cultations (No.), the average of the maximum rated quality in each region (Avg. Max), and

the minimum of the maximum rated quality across all regions (Min Max). Note that sound

qualities are average ratings given by the the human raters, not values from the estimator.
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One example of the final auscultated locations for the heart and lung, and the posterior

sound quality estimates are shown in Fig. 5.7.

Subject Method Reg. (s) Total (s) No. Avg. Max Min Max

1 BO 171 538 22 0.727 0.438
RO 171 370 12 0.648 0.312
DT 0 656 19 0.651 0.281

2 BO 183 496 18 0.716 0.531
RO 183 434 12 0.651 0.312
DT 0 559 14 0.804 0.531

3 BO 177 1155 37 0.552 0.375
RO 177 442 12 0.484 0
DT 0 613 16 0.576 0.25

4∗ BO 148 694 21 0.635 0.469
RO 148 495 12 0.599 0.375
DT 0 468 14 0.711 0.625

*: Manual registration was performed on the back of the subject.

Table 5.3: Experimental results on human subjects

Front Heart Front Lung Back Lung

Figure 5.7: Posterior sound quality predictions for heart, front lung, and back lung on Subject 1.
Observed locations are marked as green dots.

We use a linear mixed effects model to evaluate the methods, where we set the best esti-

mated sound quality found in each region to be the dependent variable, methods to be fixed

effects, and structure s (heart/lung), auscultation region, and subject to be random effects.

The results are presented in Tab. 5.4. While the estimated fixed effects coefficients show

separations among the methods, they are not strong compared to the confidence intervals.
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Fixed Effects Variances of Random Effects
Method β 95% CI s Region Subject Residual

BO 0.662 [0.556,0.768]
3.40e-12 1.77e-3 6.03e-3 1.96e-2RO 0.598 [0.492,0.704]

DT 0.703 [0.597,0.859]

Table 5.4: Mixed Effects Model Results (β:fixed effects coefficient, CI: Confidence Interval,
s:anatomical structure)

Therefore, we perform a post-hoc pairwise testing using the Tukey’s test [142]. The p-values

for the pairs BO-DT, BO-RO, and RO-DT are 0.326, 0.0700, and 0.00110, respectively. In

addition, all three random effects have a small contribution to the overall variances, where

the residual variance dominate.

To further understand diagnostic utility, we ask the raters to answer a series of yes-no

questions regarding the recordings with the best estimated quality in each region. For heart

sounds, the key features doctors look for are the first and second heart sound (S1 and S2),

while for lung sounds, doctors look for inspiration and expiration. Therefore, for heart, Q1

and Q2 are whether the raters are able to hear S1 and S2, respectively. For lung, we ask

whether they can hear inspiration (Q1 ) and expiration (Q2 ). Then for both heart and lung

recordings, Q3 asks whether any sounds not originating from the target anatomy could be

heard, and Q4 asks whether continuous noise or static obfuscated the heart/lung sounds.

Q5 asks whether they can make a diagnosis based on the recording. The results are shown

in Tab. 5.5.

Heart Lung

Method Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

BO 100 98.4 12.5 26.6 87.5 93.0 86.7 9.38 23.4 74.2
RO 87.5 92.2 25.0 31.3 78.1 89.1 74.2 11.8 24.2 66.4
DT 90.6 95.3 32.8 46.9 85.9 96.9 89.8 6.25 31.3 85.2

Table 5.5: % of Yes responses for diagnostic utility of recordings Higher is better for Q1, Q2,
and Q5

5.4.3 Discussion

Although direct teleoperation (DT) produces better sounds than registration-only auto-

mated auscultation (RO) (p = 0.001), there is no statistically significant difference between
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DT and Bayesian optimization (BO) (p = 0.326). BO obtained higher minimum sound

quality on patients 1 and 3 (Tab. 5.3), and better diagnostic values for heart sounds (Q5,

Tab. 5.5). BO was also almost always able to generate S1 and S2 heart sounds (Q1 and Q2,

Tab. 5.5). This could indicate greater consistency than a human operator, but more data

is needed to test this hypothesis. The evidence suggests that BO achieves higher qualities

than RO but is somewhat weak due to the small sample size (p = 0.070). BO does achieve

a larger minimum quality and better diagnostic values from Tab. 5.3 and Tab. 5.5. As we

expected, adaptive sensing helps overcome uncertainty in visual registration and anatom-

ical differences. Overall diagnostic value (Q5, Tab. 5.5) roughly matches the results from

the mixed effects model, where DT and BO perform comparable on heart sounds but DT

outperforms BO on lung sounds, and both outperform RO.

Using BO, the robot takes less execution time than DT on subjects 1 and 2, and similar

amount on subject 4. However, on subject 3, BO spent much more time auscultating, mainly

due to the poor lung qualities observed on the patient. In fact, the robot ended up using

the entire budget Nmax on all lung locations. Future implementations could skip between

regions, and return to past regions if there is sufficient time and need. Moreover, we limited

the movement speed of the robot empirically to avoid intimidating the subjects, but further

refinement of the motion controller could improve transit times.

For subject 4, the visual registration for the back exam was identified as having poor

alignment, shown in Fig. 5.6. The tele-operator decided to reject the automatic registration,

and instead manually labeled the auscultation points during the experiment, as shown in

Figs. 7(b) and 7(c). This deviation from fully-automatic procedure is indicated by an asterisk

in Tab. 5.3. The poor result from the visual registration is likely due to the difference between

the body type of the subject (BMI = 35.8) and the reference human model. In future work,

visual registration can be improved in various ways, such as adopting multiple reference

models for different body types. We also note that raters noticed a moderate amount of

noise and static (Q4, Tab. 5.5), and we assume this mainly comes from the robot motors

because these sounds are not present during manual auscultation. DT was slightly higher

than the automated methods, likely due to human tremor.

Finally, a surprising finding during these studies was that both the tele-operator and

the raters detected an incidental cardiac pathology on subject 2. During DT, which were

performed before BO and RO, the heart sound was described as a systolic III/IV high pitched

crescendo-decrescendo murmur localized to the right-upper sternal border. Upon listening

with BO and RO, the murmur was no longer present and the auscultation could be described

as a normal S1 and S2 with physiologic S2 splitting distinctly noted. This murmur’s transient

nature suggests a few possible diagnoses, including aortic stenosis, bicuspid aortic valve, or an
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innocent murmur. Subject 2 was recommended to see a physician for further cardiac workup.

This is promising since it shows that robotic auscultation can record cardiopulmonary sounds

useful in diagnosis.

5.5 CONCLUSION AND FUTURE WORK

This chapter proposed a method that enables a robotic nursing assistant to automatically

perform auscultation. To choose sensing locations, we show that using a Bayesian optimiza-

tion that leverages visual prior information of the clinical auscultation locations outperforms

choosing locations according to the prior only, and our system is capable of locating sounds

of comparable quality with tele-operation by a human with clinical auscultation expertise.

While the results are promising, our experimental study only includes 4 young human

subjects. In future work a larger-scale study is needed to evaluate its diagnostic capability

on populations likely to exhibit abnormalities. Furthermore, the system is significantly

slower than human doctors, and we intend to accelerate it by making movement faster,

and reducing visual registration times, and compare it to manual auscultation. We would

also like to improve the robustness of visual registration by using reference human models

with varying body types. Finally, we would like to integrate our method with diagnostic

algorithms to pre-screen for possible abnormalities.
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CHAPTER 6: FEW-SHOT ADAPTATION FOR MANIPULATING
GRANULAR MATERIALS AND LEARNING FORCE RESPONSE MODELS

OF SOFT OBJECTS

As discussed so far in this thesis, while gray-box learning improves data efficiency, there

are cases where the underlying physics is not well understood, making embedding analytical

equations based on physics challenging. In addition, gray-box learning methods presented

so far always learn from scratch. However, knowledge and priors of the task at hand can po-

tentially improve data efficiency. This chapter explores the use of meta-learning to extract

priors from offline data on similar tasks to accelerate online learning. In particular, this

chapter proposes a vision-based few-shot meta-learning method with a deep kernel model

trained with meta-learning to learn online from very limited experience on novel tasks. It

introduces a novel meta-training approach, Deep Meta-Learning with Controlled Deploy-

ment Gaps (CoDeGa), that explicitly trains the deep kernel to make predictions robustly

under large domain shifts. This chapter applies this method to two applications: few-shot

scooping and gray-box learning of deformable object force response models, and shows that

the proposed method outperforms non-adaptive methods as well as other state-of-the-art

meta-learning methods.6

6.1 INTRODUCTION

Deploying robot systems in the real world often faces the challenge of deployment gaps,

where the robot systems meet tasks out of the distribution of the training tasks. In such

cases, models trained on the training tasks may start to degrade or even completely fail.

As a result, it is necessary for the robot to adapt its strategy in an online fashion based

on data acquired on the target task. Ideally, the robot should adapt with a small amount

of data, i.e., in a few-shot learning setting. Meta-learning, also known as learning to learn,

is a promising approach to few-shot adaptation in which the on-line learning strategy itself

is learned using a set of training tasks [14]. This chapter proposes a vision-based few-shot

meta-learning method that is trained to be adaptive and robust to large distribution shifts

during deployment, by using a novel meta-training procedure that explicitly trains a deep

Gaussian process (GP) model to make predictions robustly under large domain shifts. The

deep Gaussian process model employs deep mean functions and deep kernels where the

input to the GP kernel is transformed by a neural network. It’s important to differentiate

6This chapter is adapted from Yifan Zhu∗, Pranay Thangeda∗, Melkior Ornik, and Kris Hauser, ”Few-shot
Adaptation for Manipulating Granular Materials Under Domain Shift”. In Robotics:Science and Systems
(RSS), 2023.
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our definition of the term deep GP from its other usage in the literature where it can also

refer to deep belief networks constructed from compositions of GP models [143]. Although

models similar to our proposed model have been adopted for few-shot adaptation [43], we

introduce a new meta-training approach that explicitly trains the kernel to perform well

on out-of-distribution tasks. Our Deep Meta-Learning with Controlled Deployment Gaps

(CoDeGa) method repeatedly splits the training set into mean-training and kernel-training

and learns kernel parameters to minimize loss over the residuals from the mean models. The

key idea is that we explicitly control the splitting process to ensure the mean-training and

kernel-training sets have maximal domain gaps, and the residuals seen by the kernels based

on these splits are more representative of the residuals seen in an out-of-distribution target

task. This chapter considers the application of our method to two problems.

The first application is motivated by autonomous lander missions on extraterrestrial bodies

that need to sample granular material while coping with domain shift. The terrain compo-

sitions and topologies on extraterrestrial planets can be very complex, making it very chal-

lenging to embed physics priors. Therefore, this chapter proposes a vision-based scooping

system, and employed in a Bayesian Optimization sequential decision-making framework,

the proposed method allows the robot to use vision and very little on-line experience to

achieve high-quality scooping actions on out-of-distribution terrains, significantly outper-

forming non-adaptive methods proposed in the excavation literature as well as other state-

of-the-art meta-learning methods. Moreover, a dataset of 6,700 executed scoops collected on

a diverse set of materials, terrain topography, and compositions is made available for future

research in granular material manipulation and meta-learning.

The second application is acquiring force response models of novel heterogeneous de-

formable objects, which is first introduced in Chapter 4. While the method introduced

in Chapter 4 does not leverage any prior knowledge of deformable objects, in this chapter,

we apply our few-shot meta-learning method to extract useful priors from offline data on a

variety of deformable objects. We evaluate our method on several deformable objects from

novel categories and show that it significantly outperforms learning methods that learn from

scratch, as is done in Chapter 4.

6.2 RELATED WORK

Here we review literature related to the learning techniques underlying our approach, in-

cluding meta-learning for Gaussian processes, Bayesian optimization, and few-shot learning.
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6.2.1 Meta-learning for Gaussian Process and Bayesian Optimization

When using a Gaussian process (GP) to model an unknown function, knowledge of the

distribution from which this function is drawn is required, which is encoded in the GP kernel

and other hyperparameters. Usually, this distribution is unknown in practice and all the

hyperparameters are estimated with data. However, in the few-shot regime, this estimation

can be quite inaccurate with few data points available [144]. One idea to approach this prob-

lem is to meta-train the GP on similar tasks [145, 146] offline to find good hyperparameters.

In addition, to handle high-dimensional inputs, meta-training deep mean functions and/or

deep kernels has also been explored [43, 147, 148].

Bayesian Optimization (BO) is a popular approach for sequential optimization in problems

like ours that can be modeled as a contextual bandit. Using GP as the Bayesian statistical

model for modeling the objective function is common practice in BO. Meta-learning GP in

the context of BO has also been explored before, for both GP [149, 150] and deep mean and

kernels [148]. Closest to our approach is the work that meta-learns deep kernels and means

for use in BO [148]. Compared to this work, where there are dozens to hundreds of on-line

samples, our work focuses on the few-shot regime. In addition, our work deals with real-

world high-dimensional inputs and challenging testing scenarios that are drastically different

from training scenarios.

6.2.2 Few-shot Learning via Meta-learning

Meta-learning and its application in the few-shot learning scheme have been explored

extensively. It involves training models on an offline training dataset consisting of multiple

tasks, that can adapt to a novel task using only a few examples. It has been studied

in low-dimensional function regression [151, 152, 153], image classification [35, 154, 155,

156], and reinforcement learning tasks [157, 158, 159]. These approaches usually rely on

some distance metric in feature space to compare the new examples to the available labeled

examples [156, 160, 161, 162], perform few-shot estimation of the underlying density of

data [163, 164, 165, 166], or use gradient descent to update a model learned on many related

tasks [35, 157, 167, 168]. We apply few-shot learning in the context of deformable object force

response model learning and decision-making for granular material manipulation. However,

these meta-learning methods do not necessarily work well right out of the box for these

problems especially with large domain shifts, which we will show in the experiments for

granular material manipulation. Hence we propose CoDeGa, a novel few-shot meta-learning

method for deep GP that allows a robot to achieve high-quality scooping actions in out-of-

distribution terrains faster than state-of-the-art methods.
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6.3 PROPOSED METHOD

We consider a model that maps observations and actions x to output y. During training,

the robot has access to an offline prior experience, which consists of a set of M tasks

{T1, . . . , TM}, and a training dataset Di = {(xj, yj) ∣ j = 1, . . . ,Ni} for each task i = 1, ...,M .

For convenience of notation, we separate the training datasets into sequences of dependent

variables Dy
i = {(y

j
i ) ∣ j = 1, . . . ,Ni} and independent variables Dx

i = {(x
j
i) ∣ j = 1, . . . ,Ni}.

Our method proposes to use a deep kernel model with a deep mean, which is meta-trained

by our Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa) method to perform

well under simulated deployment gaps extracted from the offline prior experience. We will

first describe our proposed model, and then training the model with CoDeGa.

6.3.1 Deep Gaussian Process Model

A GPmodels function f as a collection of random variables f(x) which are jointly Gaussian

when evaluated at locations x [144]. A GP is fully specified by its mean function m(⋅) and
kernel k(⋅, ⋅), which is the covariance function:

f(x) ∼ GP(m(x), k(x,x′)). (6.1)

Given n existing observed function values y = [y1, . . . , yn]T at x = [x1, . . . , xn]T , GP re-

gression predicts the function values at new point x∗ as a Gaussian distribution:

P (y∗∣x,y, x∗) ∼
N (m(x∗) + kK−1ȳ, k(x∗, x∗) − kK−1kT ).

(6.2)

Here,

K =
⎡⎢⎢⎢⎢⎢⎢⎣

k(x1, x1) ⋯ k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, kn)

⎤⎥⎥⎥⎥⎥⎥⎦
+ σ2

nI, (6.3)

k = [k(x∗, x1), ⋯, k(x∗, xn)] , (6.4)

ȳ = [y1 −m(x∗), . . . , yn −m(x∗)]T , (6.5)

where σn is the standard deviation of noise at an observation and ȳ is the residual. A

typical choice for the mean function is a constant mean and the radial basis function kernel

(RBF) is a popular kernel of choice [144]. The mean constant, kernel function parameters,

and σn can be hand-picked if there is prior knowledge of f . In practice, doing so is usually not
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Figure 6.1: Model architecture. The deep kernel and the deep mean share a common feature
extractor. σ is the standard deviation.

possible and they are estimated from data with type-II maximum likelihood by minimizing

the negative log marginal likelihood (NLML):

− logP (y∣x, θ) = 1

2
log ∣K + σ2

nI∣

+ 1

2
(y −m(x))T (K + σ2

nI)(y −m(x))

+ c,

(6.6)

where θ denotes all the parameters to be determined and c is a constant.

Deep kernels enhance kernels with neural networks to be more scalable and expressive [42].

For deep kernels, an input vector is mapped to a latent vector using a neural network before

going into the kernel function k(gθ(⋅), gθ(⋅)), where gθ(⋅) is a neural network with weights θ.

Deep kernels for the few-shot adaptation setting have been proposed [43] previously. Deep

kernels were also extended to use deep mean functions mθ(⋅) [147]. Our proposed deep GP

contains both a deep kernel and a deep mean. The model architecture is shown Fig. 6.1.

The kernel and mean function share the same feature extractor, which is different depending

on the application’s observation and action input type.

6.3.2 Meta-learning with Controlled Deployment Gaps

The neural network parameters and the kernel parameters of a deep GP can be jointly

trained over the entire training set with the same NLML loss as Eqn. 6.6, where θ contains

the neural network parameters.

However, this approach does not typically train kernels that are well-tuned to individual

tasks because it aggregates the data from all tasks together. Instead, meta-training may be

realized with stochastic gradient descent with each batch containing the data for a single
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task, i.e. minimizing the aggregate loss ∑i − logP (Dy
i ∣Dx

i , θ), where Dy
i and Dx

i are the

target variables and input variables of a single task. We will refer to this approach as

Deep Kernel and Mean Transfer (DKMT) which has been proposed in the meta-learning

literature [147, 148].

DKMT has potential problems with out-of-distribution tasks. During training, the resid-

uals seen by the kernels are residuals of the deep mean on the training tasks, which could

be very different compared to the residuals on tasks out of distribution of the training tasks.

As our experiments for scooping will show, this feature leads to the kernels being poorly

calibrated in the worse case. Another potential issue is the over-fitting of the deep mean

function. The first two terms of NLML in Eqn. 6.6 are often referred to as the complexity

penalty and data fit terms, where the complexity penalty regularizes the deep kernels [144].

However, there is no regularization of the deep mean function. As a result, the deep mean

can potentially overfit on all the training data, so the residuals will be close to zero.

CoDeGa addresses these issues by encouraging the residuals seen in kernel training to be

representative of the residuals seen in out-of-distribution tasks with novel characteristics. In

the application of granular media manipulation, these characteristics are the granular media

material, and in the application of deformable object force response model learning, they are

object categories. The idea is to separate the training tasks into a mean training set and a

kernel training set, where each set contains different characteristics from one another. Then,

the mean is trained on the mean training set to minimize error and the GP is trained on the

residuals of the mean model on the kernel training set. These residuals are representative

of those during deployment because they are characterized by a deployment gap of novel

characteristics. However, this limits the amount of training data available for the mean and

kernel. Therefore, we repeat this process similarly to k-fold cross-validation, in which each

fold has a separate mean model trained on the mean split for that fold, and then the residuals

for that model on the kernel split are used to define the kernel loss for that fold. A common

kernel is trained using losses aggregated across folds. Finally, the mean model is trained

again on all data.

The overall CoDeGa training procedure is as follows. Denote the set of all training char-

acteristics as A and the set of training datasets as D = {D1, ...,DM}.

1. Split A into K folds A1, ...,AK .

2. Initialize an empty residual training dataset E.

3. For each fold Ak:

(a) Split D into a kernel training set Sk
kernel and a mean training set Sk

mean. Sk
kernel
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corresponds to tasks that contain any characteristic in Ak. Sk
mean consists of D ∖

Sk
mean.

(b) Train feature extractor weights θkf and deep mean weights θkm using a mean squared

error (MSE) loss on all the data in Sk
mean. Let these weights be denoted θk.

(c) For each datasetDi ∈ Sk
kernel, collect the residuals of the mean model r̃ji = r

j
i−mθk(xj

i),
j = 1, ...,Ni. Construct the inputs D̂x

i = Dx
i and the outputs D̂y

i = {r̃
j
i ∣ j = 1, ...,Ni}

to predict the residuals. E ← E ∪ D̂i.

4. Train deep kernel parameters θk with database E, i.e. minimizing the aggregate NLL loss

−∑i logP (D̂y
i ∣D̂x

i , θ). We use stochastic gradient descent where each batch contains all

samples in one task. (Note that the associated features extractor weights for each task

need to be loaded and fixed at the start of each batch training. )

5. Train θf and θm from scratch using standard supervised learning on all data in the offline

database.

If there are known features of tasks that are correlated with the latent task variables α,

instead of manually defining the characteristics for the splits, one approach would be to

perform clustering in the feature space to identify large splits. We hope to explore these

avenues in future work.

6.4 GRANULAR MEDIA MANIPULATION

Terrain sampling is a key component of scientific exploration of planets and other extrater-

restrial bodies [169]. However, Earth-bound teleoperation, as typically done in existing lan-

ders, faces intermittent and delayed communication that incurs latency of minutes or even

hours in the case of long-duration interference. Autonomous sampling, in which the robot

interprets sensor signals and makes decisions on where and how to sample, could drastically

increase the efficiency of exploration. However, realizing autonomous sampling is challenging

due to uncertainty in terrain material properties, composition, appearance, and geometry,

limits in onboard computation, and a limited sampling budget.

This section is inspired by proposed NASA missions to send autonomous landers to Europa

and Enceladus to collect and analyze terrain samples to explore whether these bodies exhibit

conditions that could support extraterrestrial life [169]. However, the composition of the icy

regolith is largely unknown and could range from snow-like granules, to flat ice, to complex

terrain formations. Although a lander may be tuned to sample well on Earth-bound terrain
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(a) (b)

(c) (d)
Scoop 1

Scoop 2

Scoop 3

Figure 6.2: (a) Scooping sand towards a slope results in a larger scooped volume than scooping
a flat surface, but (b) scooping gravel towards a slope (left) often results in jamming due to
interlocking between particles. Instead, scooping perpendicularly to a slope (right) causes a large
volume of rocks to fall into the scoop without excessive effort. (c) On a terrain with a novel non-
scoopable material (right), a non-adaptive strategy predicts high volumes on this out-of-distribution
material and only selects to scoop there (yellow arrows). (d) Our adaptive strategy adjusts based
on the feedback to explore novel and uncertain regions [Best viewed in color].
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CoDeGa Training
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Figure 6.3: Method overview in the context of the scooping problem. Our proposed deep GP
model is trained on the offline database with CoDeGa, which repeatedly splits the training set into
mean-training and kernel-training and learns kernel parameters to minimize the residuals from the
mean models. In deployment, the decision-maker uses the trained model and adapts it to the data
acquired online (Support Set).
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simulants, it will inevitably face a deployment gap when operating on an extraterrestrial

body. This work proposes a learning-based approach that explicitly addresses such gaps.

Specifically, we study a simplified but analogous problem of scooping in which the goal

is to collect high-volume samples from a target terrain with a limited budget of attempts.

Different terrain compositions and shapes require very different scooping strategies, as shown

in Fig. 6.2. For instance, while scooping against a slope on sand leads to a larger scooped

volume, doing so on a bed of gravel often results in excessive contact forces because the

gravel can interlock and jam. Although machine learning models can be trained using ter-

rain simulants to predict scooping outcomes [170], these models will have worse prediction

accuracy when the target terrain is out of distribution of the training terrains.

During scooping, our model takes an RGB-D image and parameters of a scooping ac-

tion as input and predicts the mean and variance of the scooped volume. It is trained by

executing 5,100 scoops on a variety of terrains with different compositions and materials.

For decision-making, we use a Bayesian optimization framework that chooses an action that

maximizes an acquisition function that balances the scoop volume prediction and its uncer-

tainty. Our experiments evaluate the proposed method on out-of-distribution terrains that

have drastically different appearances and/or material properties than the training terrains.

Our method allows the robot to achieve high-volume scooping actions in out-of-distribution

terrains faster than state-of-the-art deep kernel and conditional neural processes models

when used in Bayesian Optimization. Moreover, it significantly outperforms non-adaptive

methods such as those proposed in the granular material manipulation literature. To en-

courage further research in these domains, we release our dataset of 6,700 executed scoops

collected on a diverse set of materials and compositions. 7.

6.4.1 Related Work

Our work is related to granular material manipulation and is to our knowledge the first ap-

proach to integrate vision input and manipulation outcomes to adapt to out-of-distribution

terrains. Granular materials occur in a variety of real-world robotic applications, including

food preparation, construction, and outdoor navigation. Many granular material manipu-

lation tasks have been explored, including scooping [171], excavation [172], pushing [173],

grasping [174], untangling [175] and locomotion [176, 177]. Most related to our work are

scooping and excavation, which are connected but operate on different scales. The task pro-

posed by Schenck et al. focuses on manipulating a granular terrain to a certain shape [171]

by learning a predictive function of terrain shape change given an action. An optimization-

7Dataset download link: https://drillaway.github.io/scooping-dataset.html
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based method is proposed by Yang et al. to generate excavation trajectories to excavate

desired volumes of soil based on the intersection volume between the digging bucket swept

volume and the terrain [178]. Dadhich et al. propose to use imitation-learning for rock

excavation by wheel loaders, given expert demonstrations of [179]. All of these past works

are developed on a single type of material. In contrast to these methods, our work directly

addresses the large deployment gaps that are likely to be found in extraterrestrial terrain

sampling. We explore the use of kernel learning methods trained on offline data combined

with Bayesian Optimization to achieve adaptive behavior with little experience of the target

terrain.

6.4.2 Problem Formulation

We formulate the scooping problem as a sequential decision-making task where the robot,

in each episode, observes the terrain RGB-D image o ∈ O, uses a scooping policy to apply

a ∈ A(o) where A(o) is a discrete set of parameterized, observation-dependent scooping

motions. The reward r ∈R of a scoop is the scooped volume.

Presented with a target terrain T∗, the robot’s goal is to find a scoop whose reward is

above a threshold B. In planetary missions, for example, B could be the minimal volume

of materials needed to perform an analysis. During the n-th episode, the robot knows the

history of scoops on this terrain H = {(oj, aj, rj) ∣ j = 1, . . . , n − 1}, which we also refer to as

the on-line support set. Note that the support set only contains samples of low quality, i.e.

below B, because otherwise the goal would already have been achieved.

The robot has access to an offline prior scooping experience, which consists of a set of M

terrains {T1, . . . , TM}, and a training dataset Di = {(oj, aj, rj) ∣ j = 1, . . . ,Ni} of past scoops
and their rewards for each terrain i = 1, ...,M .

For a terrain, we suppose a latent variable α characterizes its composition, material prop-

erties, and topography, which are only indirectly observed. Let α∗ characterize T∗ and αi

characterize Ti for i = 1, . . . ,M . Moreover, the observation is dependent on the latent vari-

able, and an action’s reward r ≡ r(α, a) is also an unknown function of the action and latent

variable. Standard supervised learning applied to model r ≈ f(o, a) will work well when α∗ is

within the distribution of training terrains, and α∗ is uniquely determined by the observation

o or the reward is not strongly related to unobservable latent characteristics. However, when

T∗ is out of distribution or the observation o leaves ambiguity about latent aspects of the

terrain that affect the reward, the performance of the learned model will degrade.

As a result, on-line learning from H has the potential to help the robot perform better on

T∗. Meta-learning attempts to model the dependence of the reward or optimal policy on α,
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either with explicit representations of α (e.g., conditional neural processes [180]) or implicit

ones (e.g., kernel methods [43], which are used here).

6.4.3 Scooping Problem Description

This section describes the scooping problem in more detail. We use the setup shown in

Fig. 6.4, which includes a UR5e arm with a scoop mounted on the end-effector, an overhead

Intel RealSense L515 RGB-D camera, and a scooping tray that is approximately 0.9m x

0.6m x 0.2m. A terrain is defined as a unique composition of one or more materials, where

a material is composed of particles with consistent geometry and physical properties. We

consider a variety of materials and compositions for the offline database. The materials used

in this work are listed in Tab. 6.1. The offline database contains materials Sand, Pebbles,

Slates, Gravel, Paper Balls, Corn, Shredded Cardboard, and Mulch. The testing terrains

also include Rock, Packing Peanuts, Cardboard Sheet and Bedding, which significantly differ

from the offline materials in terms of appearance, geometry, density, and surface properties.

The terrain compositions used are listed in Tab. 6.2. The offline database contains the

Single, Mixture, and Partition compositions, while the testing set also contains the Layers

composition. On terrains with the Layers composition, observations do not directly reflect

the composition of the terrain, and on-line experience is needed to infer it. All terrains

are constructed manually, with varying surface features (e.g. slopes, ridges, etc.) with a

maximum elevation of about 0.2m and a maximum slope of 30○. Some terrain examples are

demonstrated in Fig. 6.5. We also observe that the scooping outcomes show high variance

because many terrain properties are not directly observable, such as the arrangement and

geometry of the particles beneath the surface.

A scoop action is a parameterized trajectory for a scoop end effector that is tracked by an

impedance controller. We follow the common practice in the excavation literature [170, 181]

to define a scooping trajectory, shown in Fig. 6.6, where the scoop has a roll angle of 0 and

stays in a plane throughout the trajectory. The scoop starts the trajectory at a location p,

penetrates the substrate at the attack angle α to a penetration depth of d, drags the scoop

in a straight line for length l to collect material, closes the scoop to an angle β, and lifts

the scoop with a lifting height h. We assume that the scoop always starts scooping at the

terrain surface, which can be calculated from the depth image. The impedance controller of

the end-effector is configured with stiffness parameters b.

To reduce the action space, we manually tuned the parameters that have smaller effects

on the scooping outcome, fixing the attacking angle α at 135○, the dragging length l at

0.06m, the closing angle β at 190○, and the lifting height h at 0.02m. In addition, we set
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Figure 6.4: The experimental setup.

Figure 6.5: Example terrains illustrating different compositions, materials, and topography. Top
left: Partition of Sand and Corn. Top right: Mixture of Mulch and Gravel. Bottom left: Single
of Pebbles. Bottom right: Layer of Shredded Cardboard (right), Packing Peanuts (left, top layer),
and Slates (left, bottom layer).
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Sand†: fine play
sand, ≪ 1mm

Pebbles†: rocks, 0.8
– 1.0 cm

Slate†: flat rocks,
2.0–4.0 cm

Gravel†: rocks, 1.5–
3.0 cm

Paper Balls†:
crumpled paper, 4.0
– 6.0 cm

Corn†: dry corn ker-
nels, 0.3–0.7 cm

Shredded
Cardboard†: card-
board, 1.0 – 8.0 cm

Mulch†: red wood
landscape mulch

Rock: rocks, 5.0 –
8.0 cm

Packing Peanuts:
white packing
peanuts, 2 x 4 cm

Cardboard Sheet:
flat cardboard sheet

Bedding: small an-
imal bedding, wood
shavings, 0.2 - 3 cm

Table 6.1: Materials used in each terrain, with approximate grain sizes where applicable. Images
show U.S. quarter coin for scale. Training set denoted with †; testing set consists of all materials
and novel material combinations.

two options for the impedance controller stiffness b, corresponding to soft and hard stiffness,

where the linear spring constants are 250N/m and 750N/m and the torsion spring constants

are 6Nm/rad and 20Nm/rad, respectively. Therefore, the action is specified by the starting

x, y position and yaw angle of the scoop, the scooping depth d, and stiffness b.

To measure the scooped volume, the scoop is moved to a fixed known pose, after which a

height map within the perimeter of the scoop is obtained from the depth image. The volume

is then calculated by integrating the difference between this height map and the height map
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Single†: A single ma-
terial

Mixture†: Uniform
mixture of two mate-
rials

Partition†: two ma-
terials that each oc-
cupy a partition

Layers: Two parti-
tions but with two lay-
ers of different materi-
als in one partition

Table 6.2: Terrain compositions. Training set denoted with †; testing set consists of all composi-
tions.

Attacking 
angle 𝛼

Penetration 
depth 𝑑

Dragging length 𝑙

Closing 
angle b

Lifting 
height ℎ

Scooping 
location 𝑝

Figure 6.6: Parametrized reference scooping trajectory.

of an empty scoop at the same pose collected beforehand.

The offline database contains data on 51 terrains, all with unique combinations of materials

and compositions. Out of these terrains, 8 are Single, 25 are Partition, and 18 are Mixture.

The materials used are randomly selected from the training materials. 100 random scoops

are collected on each terrain, sampled uniformly with random x, y positions in the terrain

tray, random yaw angle from a set of 8 discretized yaw angles, 45○ apart, random depth in

the range of 0.03m to 0.08m, and random stiffness (either “hard” or “soft”). Sometimes

trajectory planning of the robot manipulator for a sampled scoop can fail due to kinematic

constraints. If so, the scoop action is discarded and sampling continues until planning is

successful. The average scooped volume across the offline database is 31.3 cm3, and the

maximum volume is 260.8 cm3. The distribution of scooped volumes in the database is

shown in Fig. 6.7.
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Figure 6.7: Collected data distribution. The maximum scoop volume is 260.8 cm3, while the
average is 31.3 cm3.

6.4.4 Method

For the tasks of scooping, the specific architecture of the deep GP model is shown in

Fig. 6.8. It is then trained by the CoDeGa method, introduced in the previous section,

where it splits the terrains based on the terrain materials, regardless of the composition.

To use a reward model in the scooping sequential decision-making problem, the decision-

maker maximizes a score s(o, a) over the action a: π(o) = argmaxA(o) s(o, a). A greedy

optimizer would use the mean as the score, s(o, a) = m(o, a,H) where m(o, a,H) = E[r∣r ∼
p(R ∣ o, a,H)], but this does not adequately explore actions for which the prediction is un-

certain. Instead, a Bayesian optimizer uses an acquisition function that also takes uncer-

tainty into account. For example, the upper confidence bound (UCB) method defines the

acquisition function sUCB(o, a) = m(o, a,H) + γ ⋅ σ(o, a,H), where σ(o, a,H) = V ar[r∣r ∼
p(R ∣ o, a,H)]1/2 is the standard deviation of the prediction and γ > 0 is a parameter that

encourages the agent to explore actions whose outcomes are more uncertain.

6.4.5 Experiments and Results

Testing Tasks We evaluate our method on 16 test terrains that contain out-of-distribution

materials and compositions. We introduce 4 new materials, which are Rock, Packing Peanuts,

Cardboard Sheet, and Bedding, described in Tab. 6.1. In addition to the compositions during

training, we also consider the Layers composition, described in Tab. 6.2. Note that the

Cardboard Sheet material is not scoopable. For each of the Single, Partition, Mixture, and

Layers compositions, we consider 4 terrains. The 4 Single terrains are created with each of

the 4 new testing materials. Material combinations on terrains with the Mixture, Partition,

and Layers compositions are randomly generated but with the constraints that 1) each of

83



3x3 conv, 32

3x3 conv, 64

3x3 conv, 128

3x3 conv, 256

3x3 conv, 512

FCL, Output 128

3x3 conv, 32

3x3 conv, 64

3x3 conv, 128

3x3 conv, 256

3x3 conv, 512

FCL, Output 128

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

FCL, [32,64,128]
LeakyReLU

FCL, 
[128,64,32,10,1]

ReLU

FCL, 
[128,64,32,30]

ReLU

Gaussian Process

+

𝑦σ

Deep 
Mean

Deep 
Kernel

Residual

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Scoop depth  
and stiffness

RGB-D image patches 
at scooping location

[𝑑, 𝑏]

Scooped VolumeStd Dev

Figure 6.8: Model architecture. The deep kernel and the deep mean share a common feature
extractor.“FCL” denotes fully-connected layers, with the output layer sizes and the activation
function specified. “conv” denotes convolution layers with filter size and number specified. A
stride of 2 is used for all convolutional filters. The radial basis function kernel is used for GP.

the new materials is selected at least once; 2) each terrain contains at least 1 new material.

We exclude Cardboard Sheet from Mixture since it is physically impossible to create.

Model Training PyTorch [182] and GPyTorch [183] are used to implement the neural

networks and GP. The Adam optimizer is used for training. Learning rates of 5e-3 and

1e-2 are used for the training of the deep mean and deep kernel, respectively. These values

are hand-picked by inspecting the training loss and are not carefully tuned. For training

the mean, 10% of the training data is used for validation and early stopping based on the

validation loss with patience of 5 is used to select the training epochs. Early stopping with

a patience of 5 based on the training loss is used to select the training epochs for the deep

kernel. We also apply data augmentation, where for both mean and kernel training, random
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vertical flips of the images are used since flipping vertically would not change the predicted

volume. For mean training, random hue jitter and random depth noise are also applied. The

training process takes less than 30 minutes on a hardware setup consisting of an i7-9800x

CPU, a 2080Ti GPU, and 64GB of RAM.

Simulated Experiments We perform 2 types of simulated experiments, prediction ac-

curacy and simulated deployment, on a static test database to evaluate the performance of

our methods against the state-of-the-art. The test database consists of 100 randomly chosen

scoops on each of the 16 testing terrains

For prediction accuracy, we are evaluating how well each model predicts scoop volume in

the k-shot setting. 80 samples from each terrain’s data are first randomly drawn to form

the query set. The support set is randomly drawn from the remaining 20 samples. The

prediction accuracy in terms of mean absolute error (MAE) of the model on the query set

given the support set is evaluated.

For simulated deployment, we evaluate how the model’s prediction accuracy impacts adap-

tive decision-making performance. In this experiment, we implement a policy that only se-

lects from the 100 actions in the dataset for the given test terrain, and the robot receives the

corresponding reward observed in the dataset. A trial begins by observing a single RGB-

D image as input, and the agent executes the policy until the sample reward is above a

threshold B. B is customized for a given terrain and is defined as the 5th largest reward in

that terrain’s dataset. The Single Cardboard Sheet terrain is excluded in these experiments

because it is not scoopable.

We compare our method against two state-of-the-art meta-learning methods and one non-

adaptive baseline. The first method is DKMT [147], with the same deep network architecture.

A learning rate of 1e-2 and early stopping with patience of 5 based on the training loss is

used to select the epochs. The second method is conditional neural processes (CNP) [180],

which is a non-kernel-based approach that learns a task representation using the support set

and conditions the prediction on the query set on the learned task representation. Neural

networks of similar width and depth compared to our proposed neural network architecture

are used. During each epoch in meta-training, each task is randomly split into a support set

of 5 samples and a query set of 95 samples. The training loss is the NLML on the query set on

each task given the support set. Early stopping with a patience of 5 based on the validation

loss on 6 randomly sampled validation tasks is used to select the training epoch. For the

0-shot case in CNP, a zero task representation is used. The last baseline is a non-adaptive

baseline that only uses the deep mean function of our model.

The results are summarized in Tab. 6.3 and Tab. 6.4. Each model is trained 3 times with
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Method 0-shot 5-shot 10-shot 0-shot∗ 5-shot∗ 10-shot∗

CoDeGa 27.4 24.7 23.8 68.4 61.3 60.8

DKMT [147] 25.8 22.1 21.3 103.4 83.6 80.1

CNP [180] 25.7 25.1 25.0 101.4 100.4 100.5

Non-adaptive 27.4 27.4 27.4 68.4 68.4 68.4

Table 6.3: Average Prediction MAE. Averages taken across all test terrains and across 3 random
seeds. ∗ indicates MAE over the 5 samples of largest volume in the query set, averaged across all
test terrains.

Figure 6.9: Distribution of MAE reduction from 0-shot to 10-shot support sets (10% indicates
that the 10-shot MAE is 90% of the 0-shot MAE), over all testing terrains, and aggregated over 3
trained models.

different random seeds and average results across all tasks aggregated over 3 random seeds are

reported. For prediction accuracy, in addition to the average MAE on all query data, we also

report the average MAE of the 5 largest samples in the query set of each terrain because it

is important to predict well on the “good samples” in a reward-maximizing decision-making

setting. To compare DKMT and CoDeGa on a finer scale, we plot the distribution of MAE

percentage reduction of each terrain from 0-shot to 10-shot support sets on all test terrains,

aggregated over all 3 trained models, in Fig. 6.9. For simulated deployment, the adaptive

methods are used by a UCB decision maker with γ = 2, while the non-adaptive baseline sorts
actions by the reward predicted by the mean model and greedily proceeds down the list.

From Tab. 6.3, we observe that DKMT and CoDeGa have similar MAE reduction from

0-shot to 10-shot on average, with DKMT slightly outperforming it. However, CoDeGa

outperforms DKMT in terms of prediction accuracy on the good samples. In addition,

from Fig. 6.9, we find that DKMT exhibits a high variance, even degrading significantly

in performance for some terrains from 0-shot to 10-shot adaptation. CoDeGA outperforms
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Method Avg. Attempts Max. Attempts

CoDeGa 5.2 28

DKMT [147] 6.9 50

CNP [180] 9.6 40

Non-adaptive 8.3 57

Table 6.4: Simulated deployment results. Average and Max are taken across all testing terrains
excluding the Single Cardboard Sheet terrain, and across 3 random seeds.

DKMT on the simulated deployment experiments. On the Single Rocks testing terrain

where DKMT suffers the largest degradation, BO with the DKMT model takes as many as

44 attempts to reach the threshold in for one of the random seeds. This is due to incorrect

correlations between low-quality support set samples and samples that are potentially of

high quality. Both CoDeGa and DKMT outperform CNP and the non-adaptive approach

significantly on both prediction accuracy and simulated deployment.

Physical experiments Lastly, we evaluate the real-world performance of our method in

physical deployments. Here, the robot has a larger action set, it executes the scooping

sequence as determined by the optimizer, and each action introduces terrain shifting for

the subsequent action, so the RGB-D image is re-captured after every scoop. Policies are

deployed on the same 15 testing terrains as the simulated experiments and with the same

termination threshold B. For each trial a budget of 20 attempts is enforced, beyond which

the trial is considered a failure.

The action set is a uniform grid over the action parameters, with 15 x positions (3 cm grid

size), 12 y positions (2 cm grid size), 8 yaw angles, 4 scooping depths, and 2 stiffness, totaling

11520 actions. If robot trajectory planning fails for a scooping action, the next action that

has the highest score is selected until planning succeeds.

We compare our proposed method (Ours) to the Non-Adaptive baseline, i.e. only the deep

mean, and a volume-maximizing (Vol-Max) policy, where the action is chosen to maximize

the intersection between the scoop’s swept volume and the terrain following a strategy pro-

posed recently in the excavation literature [178]. We note that Vol-Max also does not adapt.

Ours uses a UCB decision maker with γ = 2 and the CoDeGa model, while Vol-Max and

Non-Adaptive use a greedy decision maker.

Each method is run on each terrain three times. Ours and Non-Adaptive are tested with

three models trained with different random seeds, while Vol-Max is simply tested 3 times.

When deploying the policies on a testing terrain, the terrain is manually reset at the start of

each deployment so that surface features are consistent across trials. Note that slight terrain
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Method Avg. Attempts Max. Attempts Success Rate

Ours 3.1 16 100%

Vol-Max 7.3 20 91.1%

Non-adaptive 6.2 20 84.4%

Table 6.5: Results from physical experiments over 3 trials per method on 15 testing terrains. The
robot is limited to 20 attempts.

variations are introduced naturally during the reset.

The average and max number of attempts before termination and success rates for all

methods are reported in Tab. 6.5. Our method outperforms the other two baselines signifi-

cantly, achieving a 100% success rate. We show two representative trials for each of the three

methods in Fig. 6.10. On the Partition with Gravel and Cardboard Sheet terrain, the deep

mean function predicts higher volumes on the Cardboard Sheet, but our method is able to

quickly adapt. Vol-Max also succeeds, but requires more attempts since maximizing volume

is not the most optimal policy to scoop Gravel. Non-adaptive causes the decision-maker to

repeatedly select scoops on the Cardboard Sheet and eventually fail. On the second terrain,

Layers with Packing Peanuts over Slates and Shredded Cardboard, the deep mean function

predicts higher volumes on Packing Peanuts, but due to the layer of Slates underneath the

scoop jams easily. Our method adapts to this observation in a few attempts. Vol-Max is

able to perform similarly well as our method because Shredded Cardboard has more promi-

nent terrain features, resulting in large intersection volumes. As a result, it always selects to

scoop on Shredded Cardboard but takes 9 attempts to obtain high volumes because Vol-Max

ignores the arrangement of granular particles, which has a big effect on the scoop outcome.

Non-Adaptive takes many samples on Packing Peanuts, but eventually stops because the

Slates become exposed, and Slates are in the training database and predicted to yield low

volume.

Although our method achieves a 100% success rate, it is possible to have arbitrary ma-

terials, e.g. material with rainbow colors, where the kernels correlate support data samples

poorly. In such cases, it is desirable to adapt the kernels online and we leave this to future

work.

6.5 DEFORMABLE OBJECT FORCE RESPONSE MODEL LEARNING

In this section, we revisit the problem of learning point interaction models of deformable

objects, first introduced in Chapter 4. Previously, learning the point interaction model is

done purely in an online fashion with AutoML [184] without any prior knowledge of the
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First Action Last Action

Ours

Vol-Max

Non-
adaptive

Total AttemptsIntermediate Action

3

9

12

9

20 (fail)

15

90 cm30 cm3

Figure 6.10: Example physical trials on two terrains comparing our method, the Non-Adaptive
baseline, and Vol-Max. The terrain on the top is Partition with Gravel and Cardboard Sheet, while
that on the bottom is Layers with Packing Peanuts over Slates on the left and Shredded Cardboard
on the right. The arrow indicates executed action while the color indicates the scooped volume.

learning problem. In this section, we demonstrate that by leveraging offline training data on

a variety of deformable objects using CoDeGa, online learning adapts to out-of-distribution

deformable objects better.

6.5.1 Problem Description

The problem setup follows that introduced in Chapter 4.3.1. The main difference is that

now the machine learning model has access to prior poking experience on different ob-

jects. We briefly describe the problem here. Data collection is performed with the same

procedure as that introduced in Chapter 4.3.1. For each deformable object, the equilib-

rium surface model is captured, which is a set of S of points x ∈ R9, with each point
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x = [px, py, pz, r, g, b, nx, ny, nz], representing position, color, and (outward) normal, respec-

tively. The point interaction model is denoted as f = y(x, d), where f ∈ R is force mag-

nitude in the normal direction, x is a point in S, and d ∈ R is displacement. Letting

n = [nx, ny, nz] ∈ R3 denote the normal in x and p = [px, py, pz] ∈ R3 the position, this map

gives the force a point probe would feel in the direction of n when the point is moved to

position p − d ⋅ n.
Poking data is then collected at sampled surface points by moving the point probe in

the negative normal position at each point while recording force in the normal direction at

200Hz until a maximum force is reached, which is set to be 7 - 11N, depending on the overall

stiffness of each object (please refer to Chapter 4.3.1 for details). Sampling is done by using

voxel downsampling with a voxel size of 1.5 cm to 3 cm, depending on the overall size of the

object.

Consequently, the dataset of each object includes the surface point cloud S, a set of N

points poked: X = {x1,⋯, xN}, and for each point poked, 8 uniformly sampled displacement-

force pairs (d, f). The objects in the offline training set and online testing set are shown in

Fig 6.11, with a total of 21 objects coming from 7 distinct categories with varying visual and

tactile properties.

In addition, we also collect data of the objects interacting with other novel rigid objects for

evaluating the accuracy of the simulator. In particular, we use the same line probe as shown

in Fig. 4.2a in Chapter 4. We probe with the line probe once at each of the same poking

locations as that for the point probe with random orientation (about the normal) while

recording the 6D wrench until the force magnitude reaches the maximum force, being 11 -

15N depending on the object. Similar to the point probing data, the displacement-wrench

data is also uniformly downsampled to 8 points for each probing action.

6.5.2 Experiments

We use the AutoML [184] method used in Chapter 4 as the baseline. For the deep ker-

nel model, we adopt a very similar architecture compared to that used for scooping. The

main difference is that instead of using CNN to encode local RGBD images, we use a Point-

Net++ [185] for encoding the entire object point cloud, with default settings. The input

point cloud S is randomly downsampled to 2048 points, and each point only includes the

position and color information. The action input for the model is the position of the probed

point and the displacement, and the output is the mean and standard deviation of the felt

force in the normal direction.

We evaluate the performance of CoDeGa with force prediction mean absolute error (MAE)
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Figure 6.11: The training (blue box) and testing (orange box) objects used in the point interac-
tion model learning experiment with CoDeGa. The boxes group objects from the same category
together. The categories include stuffed objects, toys with rubber, dog toys, hand bags, sports
equipment, shoes, and boxes (order from left to right and top to bottom). [Best viewed in color.]

in the k-shot setting on the testing objects, after training on all training objects. The

controlled deployment gap used here is the object category.

Results We use the same hyperparameters for training the deep kernel as those for scoop-

ing. CoDeGa is trained 3 times with different random seeds. The mean absolute error (MAE)

for different numbers of shots for CoDeGa and AutoML is shown in Fig 6.12. The MAE

reported for AutoML is the average across 4 testing objects while that reported for CoDeGa

is averaged across the aggregated tasks over 3 random seeds. The standard deviation is

calculated from the 3 average MAE of 4 testing objects from 3 random seeds. CoDeGa

is able to outperform AutoML significantly, especially when the number of shots is small.

A qualitative comparison of CoDeGa and AutoML predictions on a tissue box is shown in

Fig. 6.13. From the ground truth values, it is obvious that there is some calibration error

in the RGBD camera extrinsics. Our method is able to better capture both the bias in the

camera calibration and the fact that the edges and corners of the tissue box are stiffer.

We further combine the learned point model with the analytical simulator for simulating

the contact wrench of the testing objects with a line probe. The force and torque error

magnitudes using the point models trained by CoDeGa and AutoML with different numbers

of shots averaged across the 4 testing objects are shown in Fig. 6.14. A medium-performing

random seed is used for CoDeGa. These results show similar patterns to the results for point

model learning, where CoDeGa also improves the analytical simulator over AutoML. These

results also show that CoDeGa can complement gray-box learning.
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Figure 6.12: The point interaction model learning results. The force MAE reported for AutoML
is the average across 4 testing objects while that reported for CoDeGa is averaged across the
aggregated tasks over 3 random seeds. The shaded area represents the standard deviation, which
is calculated from the 3 average MAE of 4 testing objects from 3 random seeds. [Best viewed in
color.]

(a) (b) (c)

Figure 6.13: The ground truth and predicted force felt by a point probe at displacement = 3mm
on the rectangular tissue box object. The poked locations are indicated as circles, colored by the
true force. The poked locations in (b) and (c) are the support data. (a) The ground truth force felt
at the locations in the dataset. (b) The predicted forces by our method. (c) The predicted force
by AutoML. Our method is able to better capture both the bias in the camera extrinsic calibration
and the fact that the edges and corners of the tissue box is stiffer. [Best viewed in color.]
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Figure 6.14: Results for the simulated contact wrench with the line probe using point models
learned by CoDeGa and AutoML with different numbers of shots, averaged across all pokes for
all testing objects. A medium-performing seed of CoDeGa is used. The force and torque error
magnitudes are separately reported. [Best viewed in color.]

6.6 CONCLUSION AND FUTURE WORK

This chapter introduced a novel method for vision-based few-shot meta-learning. This

chapter also demonstrates two applications of this method. For granular material scooping

under domain shift, we demonstrate in real-world experiments that our proposed approach

quickly achieves large scoop volumes on terrains that are drastically different from those seen

in training, and significantly outperforms non-adaptive methods. In the future, we would

like to explore more complex rewards, such as the outcome of a scientific assay from a sample

analysis instrument. In addition, the force and torque the scoop experiences when executing

a scoop action could be very informative about the underlying terrain and we would like to

condition the scooping policy on these as well. Finally, our current method has no control

over the controller that tracks the scooping trajectory other than the stiffness parameter. We

would like to investigate feedback controllers that can react and adapt to terrain in real-time

during scooping to further facilitate adaptation.

We also demonstrate the performance of CoDeGa for the point force response model learn-

ing of deformable objects, where it is able to significantly outperform pure online learning.

This shows evidence that CoDeGa can be general to other robotics tasks, and complement

gray-box learning.
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CHAPTER 7: EXCAVATION OF FRAGMENTED ROCKS WITH
MULTI-MODAL MODEL-BASED REINFORCEMENT LEARNING

While Chapter 6 presents an algorithm to plan for open-loop reference granular manip-

ulation trajectories, this chapter presents a controller for the excavation of a single type of

fragmented rocks given a reference trajectory. This chapter adopts a multi-modal model-

based reinforcement learning (MBRL) approach to the excavation of fragmented rocks, which

are very challenging to model due to their highly variable sizes and geometries, and visual

occlusions. A multi-modal recurrent neural network (RNN) learns the dynamics of bucket-

terrain interaction from a small physical dataset, with a discrete set of motion primitives

encoded with domain knowledge as the action space. Then a model predictive controller

(MPC) tracks a global reference path using multi-modal feedback. We show that our RNN-

based dynamics function achieves lower prediction errors compared to a feed-forward neural

network baseline, and the MPC is able to significantly outperform manually designed strate-

gies on such a challenging task.8

7.1 INTRODUCTION

Excavators are versatile earth-moving machines that are widely used in mining, agricul-

ture, and construction. Excavator operation requires highly skilled operators and oftentimes

happens in hazardous environments that could cause injuries [186]. This has led to an in-

creasing amount of effort in excavation automation [179], but one of the key challenges of

excavation automation is that it is impossible to model the machine-earth interaction accu-

rately [179], especially for complex, non-homogeneous terrains such as fragmented rocks.

In this work, we focus on the problem of excavation of fragmented rocks, and a real-

world example is shown in Fig 7.1. Compared to homogeneous materials such as sand, the

interaction between an excavator bucket and a pile of fragmented rocks is very challenging to

model because the rocks are highly variable in sizes and shapes, and they are only visible from

the surface. When following an arbitrary digging trajectory, an excavator bucket tends to get

stuck because jamming among the rocks occurs frequently and generates large interaction

forces. When human operators excavate fragment rocks, they need to find gaps between

rocks to insert the bucket and continuously adjust and react to the change in the visual scene,

interaction forces, and even engine noises of the machines. Another strategy they use when

the bucket gets stuck is to wiggle the bucket to disturb and loosen up the rocks. However, this

8This chapter is reproduced from Yifan Zhu, Liyang Wang, and Liangjun Zhang, ”Excavation of Frag-
mented Rocks with Multi-modal Model-based Reinforcement Learning”. In IEEE International Conference
on Intelligent Robots and Systems (IROS) 2022. This work is done during my internship at Baidu, USA.
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Figure 7.1: Fragmented rocks excavation using an excavator.

type of strategy is challenging to discover automatically by a planner. Previous works have

adopted admittance control [187, 188] and trajectory learning [189] for wheel loaders, but

can only handle limited scenarios. Recently, model-free reinforcement learning approaches

have been applied to finding excavation policies for wheel loaders [190] and excavators [191],

but the training is done in simulation due to the requirement of large data. The bottleneck

here is that accurate and efficient simulators are currently not available for complex terrains

such as fragmented rocks.

We aim to address these challenges associated with excavation of fragmented rocks, in-

cluding the difficulty in modeling terrain-bucket interactions and acquiring a large dataset,

and the requirement for dexterous excavation skills. Towards equipping autonomous exca-

vators with similar capabilities as humans, we propose a multi-modal model-based reinforce-

ment learning (MBRL) approach to fragmented rocks excavation, that enables data-efficient

learning using a small dataset of physical data and significantly outperforms manually tuned

excavation strategies.

In our method, the excavation domain knowledge is encoded into a discrete set of primitive

motions, and a recurrent neural network (RNN) learns the dynamics of bucket-terrain in-

teraction with visual, tactile, and proprioceptive modalities using data collected in physical

experiments. During online excavation, a global reference excavation path is given, which is

tracked with a model predictive controller (MPC). The MPC follows the path whenever pos-

sible to maximize the excavated mass, and deviates from the path to avoid excessive contact

forces that lead to jamming. We show that our RNN-based model significantly outperforms

a feed-forward neural network baseline. We demonstrate from extensive experiments that

our system is capable of completing excavations with high success rates of avoiding jamming,

and outperforming manually designed strategies in tracking error and excavated mass.
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7.2 LITERATURE REVIEW

7.2.1 Excavation Automation

There has been plenty of work in control [192, 193, 194], trajectory planning [178, 195], and

task-level planning [196, 197, 198] for autonomous excavators and earth-moving machines.

However, the majority of these works focus on excavation of homogeneous materials, such

as sand and soil, and can not be directly applied to fragmented rocks. Here we review works

on the excavation of fragmented rocks.

Control-based methods have been proposed for fragmented rocks excavation. Dobson et

al. adopt an admittance control framework for fragmented rocks excavation by wheel load-

ers [187]. Fernando et al. extend this work by adapting the admittance control parameters

online with iterative learning [188]. Compared to control-based approaches, our method

performs local planning that gives rise to more versatile and optimal behaviors.

Dadhich et al. adopt imitation learning for wheel loaders by simply performing regression

on expert demonstrations [189], but this approach could only handle simple scenarios. Model-

free [190, 191] and model-based [170] RL approaches have been adopted in this problem

domain as well, but the learning is performed in simulation, which deviates from reality.

For example, when applying trajectories planned with a planner based on simulation data,

failures due to jamming have been reported [170]. Our proposed method enables data-

efficient learning from physical data and incorporates multi-modal sensory information to

avoid jamming.

7.2.2 Contact-rich Manipulation with Multi-modal Observations

Humans are capable of seamlessly fusing multiple sensory modalities including visual,

tactile, and proprioceptive information while performing contact-rich manipulation tasks,

and it is a natural strategy for robots as well because each of these modalities is able to

provide unique information and complement each other. In the recent years, it has become

increasingly common to consider multi-modal observations for contact-rich manipulation

tasks. Kappler et al. propose a method that would learn a set of manipulation skill with

multi-modal sensory input, formulated as dynamic motion primitives, and store them in a

manipulation graph used for planning [199]. Fazeli et al. demonstrate a robot that leverages

hierarchical Bayesian representation with multi-sensory observations to play the game of

Jenga. End-to-end learning has also been adopted [200], and Lee et al. utilize auxiliary

goals to learn a latent state representation that fuses all modalities [201]. In addition,

imitation learning [202, 203] and inverse RL [204] approaches have also been adopted for
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contact-rich manipulation tasks with multi-modal observations. However, the majority of

these methods focus on relatively simple tasks such as peg-in-hole, Jenga, and wiping, while

we tackle a very challenging problem of fragmented rocks excavation.

7.2.3 Model-based Reinforcement Learning

MBRL approaches have been surveyed and compared recently in a survey [205] and a

benchmark [206]. Compared to model-free methods, a model-based approach is more data-

efficient and makes it possible to directly learn from real-world data, which is usually ex-

pensive to collect for robotics tasks. Compared to most of the MBRL methods for control

and planning [206], our method adopts a discrete action space with primitives designed with

domain knowledge, and uses discrete planning methods for the MPC.

7.3 PROBLEM DEFINITION

In the real world, e.g. construction sites, automation of excavators aims to maximize the

amount of materials excavated per unit time. In the case of fragmented rocks, the excavator

would execute a trajectory that allows the digging bucket to collect as much material as

possible, while avoiding getting stuck since that would require the excavator to abort the

current trajectory. In this work, we simplify the problem by giving a reference path that is

designed to excavate a large volume if followed precisely, and aim to plan actions to follow

the path, using multi-modal feedback. Ideally, the executed trajectory would follow the

reference path when possible, but also deviate from the path to avoid getting stuck due to

large contact forces.

We use a 7-DOF Franka Panda arm and irregular wooden blocks to emulate an excavation

scene of fragmented rocks. The excavation setup and the frame definition are in shown in

Fig. 7.2, where we use an overhead RGB camera and mount a digging bucket to the robot

arm end-effector. We note that although as explained in the next paragraph, the emulated

excavator has 4 DOFs, the same as an actual excavator, the geometries of the configuration

space are different. However, this would not affect the generality of the proposed method

itself. We represent the state of the robot and the environment at time t as st ∈ S = P×R3×I,
which includes the bucket pose, the contact force at the bucket and an RGB image from

the overhead camera. Since an excavator arm only has 4 degrees of freedom, we restrict

the robot’s bucket pose to only the 3 translations and rotation around the world y-axis, i.e.

P = R3 × SO(2). For notation convenience, we also represent the state without the visual

information at time t as qt ∈ Q = P ×R3.
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When an excavator bucket encounters large resistive forces from the substrate, a human

operator often adopts a strategy to wiggle the buckle to disturb and loosen the rocks. We

take advantage of such domain knowledge and instead of using continuous controls as the

action space, we define a set of 9 discrete action primitives A as the action space. The

primitives include Cartesian movements and rotation of the bucket, and wiggling of the

bucket:

• Cartesian movement of the bucket in both the positive and negative x-, y-, and z-

directions in the world frame. Each movement is 1.5 cm in length with orientation

fixed, executed at 1 cm/s.

• Positive and negative bucket orientation change in the y-axis for 0.1 rad (5.7○) at

1 rad/s.

• Wiggling of the bucket in the x-axis for 4 seconds, where the displacements follow a

sine wave with magnitude 2 cm and frequency 1Hz.

We empirically chose these actions and their parameters for our excavation scene. In the fu-

ture, it would be beneficial to investigate how to systematically choose the action parameters

based on the size of the fragmented rocks. To execute an action ai, a joint-space trajectory

is first generated using inverse kinematics (IK) and sent to the joint impedance controller of

the Franka arm with impedance set at 100Nm/rad.

Throughout this project, we follow the common practice in the excavation literature and

divide a reference path into 4 phase: digging, dragging, closing, and lifting [170, 181]. We

assume that the bucket goes toward the base of the robot, and to simplify the problem

without the loss of generality, we only consider trajectory in the x-z plane of the robot.

With these assumptions, the reference path is defined as fref ∶ [0,1]→ SE(2), an example is

shown in Fig. 7.3. Simply tracking such an trajectory on fragmented rocks often results in

the bucket getting jammed. In our experiment setup, due to the use of a safe collaborative

robot, the robot controller would take over and issue an halt to the robot when a large

contact force is detected, which we use as a criterion for whether the robot has jammed or

not throughout the chapter.

Throughout the chapter, due to the use of a discrete action space, a trajectory of length T

is defined as T actions, along with the T +1 states with or without visual information before

and after executing the action, and we ignore the states of the robot and the environment

while the primitive action is being executed.
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Figure 7.2: Excavation setup with the world frame labeled and the excavation scene with scale.
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Figure 7.3: Reference digging trajectory.

7.4 DYNAMICS LEARNING

We adopt a MBRL formulation, where we first collect a dataset of trajectories offline on

the physical setup, train a dynamics function for a sequence of actions, and use an MPC to

track a reference path online. We shall discuss dynamics learning in this section, and MPC

in Sec. 7.5.

Since only the surface of a pile of rocks is visible, we hypothesize that in order to accurately

predict the excavation dynamics, a robot needs not only the current state of the system, but

also state history, which is shown to be true through experiments in Sec. 7.6. Therefore,

the goal of dynamics learning is to, at time t, predict a horizon k of future states without

visual information q̃t = [qt+1, . . . , qt+k] given a history of states of length l: s̄t = [st−l+1, . . . , st],
and future actions ãt = [at, . . . , at+k−1], where each ai is an integer. Since this is a sequence-

to-sequence prediction task, we propose to use an RNN to learn such a dynamics function,

which encodes visual, proprioceptive, and tactile modalities.

The entire architecture is shown in Fig. 7.4, where the sizes of the fully-connected layers
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are annotated. Each of the three modalities in each state is first encoded into a single latent

feature. The RGB image is encoded with a ResNet50 convolutional neural network (CNN)

model [207]. The bucket pose and contact wrench are encoded with separate fully-connected

layers. These three modalities of encoded features are then concatenated into a single vector

that passes through another fully-connected layer to a feature vector z. A sequence of length

l of z vectors is then input into the RNN encoder.

Actions are one-hot encoded and they pass through a fully-connected layer before inputting

into the decoder. The dimension of the one-hot encoding is 10, which is the size of the action

space plus a null action. Separate fully-connected layers are used to obtain the pose and

force from the decoder latent state. We apply batch normalization and the leaky ReLU

activation function [208] to each fully-connected layer. In addition, We use a gated recurrent

unit (GRU) [209] RNN model with additive attention [210]. Compared to a typical sequence-

to-sequence machine translation, the main difference is that we have control inputs in the

RNN decoder.

RGB Image

CNN

Pose

Force

GRU 

Encoder

Force

𝑧

[4 x 512]

[3 x 512]

[3076 x 1024]

Action

[1024 x 4]

GRU 

Decoder

Pose

[1024 x 3][10 x 1024]

Attention

Figure 7.4: Dynamics learning architecture.

We collect training data by executing random and manually designed trajectories while

recording visual, proprioceptive, and tactile data, detailed in Fig. 7.6.1. The trajecto-

ries are post-processed into training data points, where the i-th data point is denoted as

(s̄(i)t , ã
(i)
t , q̃

(i)
t ), where q̃

(i)
t is the prediction target. In addition, we pad the start of each tra-

jectory with l−1 null actions and copies of the first state in the trajectory. Let the dynamics

function be q̂
(i)
t = f(s̄t, ãt), where q̂

(i)
t is the predicted future states, then for N data points,

we minimize the following loss:

N−1
∑
i=0

k−1
∑
j=0
∥cT (q̃(i)t [j] − q̂

(i)
t [j])∥

2

2
, (7.1)

where c is a weight vector, and we give the bucket pose a weight of 10 and the wrench a
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weight of 1 .

7.5 PLANNING

We adopt the MPC scheme to reactively plan actions to track a reference path, where the

planner repeatedly plan a trajectory of length k based on a cost function and execute the

first action. This allows the planner to adjust to feedback when applying each action and

be robust to dynamics prediction error. The cost function we aim to minimize is a weighted

sum of three terms:

J(ãt, q̃t) =
w1 ⋅ gprog(fref , q̃t) +w2 ⋅ gtrack(fref , q̃t) +w3 ⋅ gcol(q̃t),

(7.2)

where gprog measures the progress along the reference path, gtrack weighs the tracking per-

formance of the planned trajectory, gcol calculates the penalty given to large contact forces.

We set w1,w2, and w3 to 0.8, -1.05, and -1/1500, respectively, which are tuned empirically.

The goal is to maximize gprog while minimizing gtrack and gcol. The exact definitions of these

3 terms are introduced in Sec. 7.5.2.

The planning problem is then defined as:

argmax
ãt

J(ãt, q̃t)

s.t. q̃t[⋅] ∈ Q, ãt[⋅] ∈ A,
q̃t = f(s̄t, ãt),

(7.3)

where Q is the space of feasible robot configurations and f(⋅, ⋅) is the dynamics function.

7.5.1 Planning Algorithm

Due to the discrete nature of the actions, we consider 3 well-known methods for discrete

planning, including brute-force search, random shooting (RS), and Monte Carlo tree search

(MCTS). In brute-force search, each possible trajectory is evaluated and the optimal trajec-

tory is selected. However, this method is limited by the planning horizon since the number

of possible trajectories increases exponentially with the prediction horizon. For RS, a fixed

number of random trajectories are sampled and evaluated. This number is the computation

budget. MCTS is a heuristic search algorithm, where a search tree is iteratively expanded

by balancing exploration and exploitation while each node is assigned a utility that is the

average of the rewards, i.e. negative costs, of randomly sampled future trajectories starting
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from this node. In our implementation, a fixed number of random trajectories are evalu-

ated at each expansion step of MCTS. The computation budget for MCTS equals this fixed

number multiplied by the total number of expansion steps.

7.5.2 Excavation Specific Details

As defined earlier, qt contains both the bucket pose and contact force, which we denote

as p = [x, y, z, α] and F = [Fx, Fy, Fz]. For a bucket pose p, we evaluate its progress along

the reference path by first finding the closest point pcloset on the path in terms of Euclidean

distance, ignoring the angular component. Then the progress ∈ [0,1] is calculated as the

path length, considering only the position, from the start of the path to pcloset divided by

the entire length of the path. gprog simply averages the progresses for the k future bucket

poses.

To calculate gtrack, for a pose p, we alternatively calculate its distance to the reference path

by calculating the Euclidean distance between p and pclosest including the angle, where the

position and angle use meter and radian as units, and the angles are weighted by 0.15. gtrack

could be defined as the average of the distances of the k future poses. However, due to the

granularity of the discrete actions, we allow small deviations from the reference trajectory

and use the average of the adjusted distances, where each adjusted distance scales the portion

of the original distance that is below a threshold of 0.015 by 0.2.

gcol is used to penalize large contact forces, and is an average of k future contact force

penalties, where for each contact force, zero penalty is given when the contact force is below

a threshold of 17.5 N, and is penalized with a coefficient of 1 over the threshold.

Finally, since large contact forces during lifting rarely occur, the reference path does not

contain the lifting phase. When the robot finishes closing, we simply execute lifting by

sending open-loop commands. We also note that the parameters described in this section

are empirically determined.

7.6 RESULTS

7.6.1 Data Collection

One goal of data collection is to obtain data that cover a wide distribution. To do this,

we adopt 3 strategies, including applying random actions, following scripted policies, and

following scripted policies with stochasticity.

For random actions, the robot randomly executes the 9 actions with equal probability,
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with boundaries on the position and orientation of the digging bucket to ensure safety.

We consider 3 types of scripted policies. In the first policy, denoted as ”Follow”, the robot

executes the action that minimizes its distance from a moving reference point on the reference

path, where the distance is defined as that of gtrack without scaling in 7.5.2. In particular,

once the distance in the x position between the bucket and the reference point is smaller

than 0.04, the reference point moves along the trajectory for 2 cm. Therefore, this policy

does not consider the wiggling action. The second policy (denoted as ”Closed-loop”) is the

same as Follow, but wiggles every 2 actions. The third policy (denoted as ”Open-loop”) is

an open-loop version of Closed-loop, where the entire action sequence along the path is first

planned in a similar fashion by assuming perfect execution of the actions, also with wiggling

every 2 other actions.

To introduce randomness into the scripted policies, we use a modified version of Follow.

Instead of picking actions in a deterministic way, we assign nonzero probabilities to select

each of the actions and bias the action that would minimize the distance to the reference

point.

Using these strategies, we collect a total of about 300 trajectories, and split them into

training, validation, and testing data with a ratio of 8:1:1.
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Figure 7.5: Loss of RNN and FF with different history lengths and prediction horizons on the
testing data. [Best viewed in color.]

7.6.2 Dynamics Learning

We compare our method (denoted as RNN) against a feed-forward neural network baseline

(denoted as FF). FF also uses the same multi-modal encoding layers as RNN to obtain the

history features. The model concatenates the history features and the future controls, and

predict the next k states all at once. Note that we cannot adopt the scheme where we predict

only the next state, move the window of history forward one time step and predict again
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Figure 7.6: Four snapshots of position prediction errors along a testing trajectory with RNN. In
every picture of the top row, the brown line represents the x-z position of the entire trajectory, with
future trajectory shown with transparency. The blue crosses are the ground-truth positions for the
7 future states. The colored line are the 7 positions predicted by the learned dynamics, with colors
representing position error. The bottom row contains the corresponding excavation scene. [Best
viewed in color.]

such that a variable number of future states can be predicted. This is because we would not

be able predict the future images. For the architecture, we use a total of 5 fully-connected

layers of sizes (l+k)×512, (l+k)×1024, (l+k)×512, k ×512, and k ×64. We also use batch

normalization and the leaky ReLU activation function on each layer.

For RNN, we train a model with history length l = 7 and prediction horizon k = 7. For

the FF baseline, we train three models with the same prediction horizon of 5, and history

lengths of 1, 3, and 5. We do not train FF with l or k = 7 due to neural network model size

and computer hardware limits.

One difficulty in predicting a horizon of future states with RNN is that errors in predictions

accumulate and could blow up. This is a problem for the initial stage of training where the

1-step prediction error is big. Therefore, we perform RNN training in 2 stages, similar to

the strategy used by [211]. In stage 1, we train the entire pipeline with a prediction horizon

length of 1. In stage 2, we train with the full horizon length k. For both FF training and

stage 1 of RNN training, we set the initial learning rate to 1e-4, with an exponential decay

rate of 0.7 every 10 epochs. We train with a total of 200 epochs with the Adam optimizer

and batch size of 16, and set gradient clipping at 1. For stage 2 of RNN training, we use the

same settings, except for the initial learning rate of 1e-5 and a total of 100 epochs.

For our method, and both baselines, we compare the loss on the testing dataset, for

different history length and prediction horizon, shown in Fig. 7.5. The trend in the loss

on the rows and columns of the grid shows that a longer history length leads to a smaller

prediction error and prediction errors increase with prediction horizon, for both RNN and FF.

In addition, RNN outperforms FF consistently, while using fewer neural network parameters

(excluding the multi-modal encoding layers, RNN is approximately 1/3 of the size of FF
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Method Testing Loss
all modalities 0.02191

all modalities w/ pretrained CNN 0.02606
no vision 0.02217
no tactile 0.02356

no vision nor tactile 0.02370

Table 7.1: Dynamics Ablation Studies

with l = 1). To give a sense of the scale of the prediction error, an average prediction

error of 4.5mm in position, 0.18 rad in angle, and 0.10N in force is equal to a loss of about

0.3. Finally, we demonstrate the dynamics prediction and its quality along a trajectory in

Fig. 7.6.

Ablation studies In the ablation studies, we intend to answer whether the visual and

tactile modalities help improve state prediction. We also look into whether we could use

pretrained visual features on other tasks to improve training efficiency. We train separate

RNN models for each of the methods listed in Tab. 7.1 for l = k = 7, and report the loss on

the testing dataset. For pretrained visual features, we use pretrained RNN weights on the

ImageNet dataset [212]. The results show that the visual features learned on the ImageNet

are not suitable for this task. At the same time, each modality decreases the loss, although

it seems that the vision plays a smaller role than tactile information. This could indicate

that the surface of the object pile is less useful. However, we suspect that this is more likely

due to the fact that end-to-end learning does not lead to the best visual features, and we

would like to pretrain the visual features with auxiliary tasks designed for excavation in the

future.

Method % of Jam Pos. Err. (cm) Ang. Err. (○) Weight/Action (g)

Follow 50% / 60% / 100% 0.61 / 0.64 / - 2.2 / 2.2 / - 1.00 / 2.10 / 0.0
Closed-loop 10% / 20% / 60% 1.5 / 1.3 / 1.4 9.1 / 8.5 / 7.7 0.202 / 0.688 / 1.55
Open-loop 10% / 10% / 30% 1.2 / 1.4 / 2.0 5.4 / 6.4 / 6.5 0.341 / 0.669 / 1.40
BF, k = 3 0% / 0% / 20% 1.6 / 2.0 / 1.6 2.9 / 2.8 / 2.5 0.971 / 1.35 / 1.47
BF, k = 5 10% / 10% / 20% 1.6 / 1.7 / 2.2 2.1 / 2.4 / 2.7 0.954 / 2.37 / 3.13
RS, k = 5 30% / 10% / 30% 1.5 / 2.0 / 2.4 2.3 / 2.6 / 3.1 1.67 / 2.29 / 2.53
RS, k = 7 10% / 10% / 10% 1.4 / 1.9 / 2.8 2.9 / 3.2 / 3.5 1.65 / 2.64 / 2.90

MCTS, k = 5 10% / 10% / 20% 1.4 / 1.8 / 1.9 3.2 / 3.1 / 2.7 1.34 / 2.23 / 2.77
MCTS, k = 7 40% / 10% / 20% 1.2 / 2.3 / 2.0 3.3 / 3.3 / 3.2 1.84 / 1.45 / 3.11

Table 7.2: Excavation Experiments for Shallow/Medium/Deep Trajectories (BF: Brute-force)
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Step 1 Step 11 Step 21 Step 32

Step 1 Step 8 Step 16 Step 23

Figure 7.7: The top and bottom rows show two example trajectories executed with MCTS, k = 5,
tracking the deep trajectory. In the top row, a few objects are successfully excavated, while the
excavation is aborted due to large contact forces in the bottom row.

Figure 7.8: Two cases that led to jamming. On the left, big blocks prevented penetration. On
the right, the digging bucket teeth caught a red concave object. [Best viewed in color.]

7.6.3 Excavation Experiments

For the excavation experiments, in addition to evaluating the performance of the 3 different

planners, we look into whether using wiggling helps excavation, and whether using a longer

prediction horizon improves planner performance despite the larger errors in prediction. We

compare the planners against 3 baselines, Follow, Closed-loop, and Open-loop, defined in

Sec. 7.6.1. We use three previously unseen trajectories to evaluate the methods. Relative to

the surface of the fragmented rocks pile, the trajectories are shallow, medium, and deep in

depth, with the deepest trajectory about 8-10 cm beneath the surface during the dragging

phase. We repeat 10 trials on each of the 3 trajectories, and we manually randomize and

reset the object pile after each trial. If the robot gets jammed during any of the trials, we

abort the current trial. Throughout the experiments in this subsection, we use the same
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dynamics model architecture with the best performance, which is RNN with all modalities.

Due to the small size of the dataset, we train a final model on both the training and testing

data, and stop training when the validation error is minimized. We use a history length l =

7 for all the experiments.

We use 4 metrics to compare the performance of different planners, which are the number

of trajectories that lead to jamming, the average position and angle tracking errors for the

trajectories that do not jam, and the amount of material removed per action. The first

three metrics are directly related to the terms in the cost function for tracking error and

large contact forces. Since the ultimate goal in the real world is to maximize the amount

of materials removed per excavator action, we also use the weight per action metric. For

the trajectories that lead to jamming, we simply count the actions that have been executed

before jamming happens, and consider the excavated weight as 0. The results are shown in

Tab. 7.2. We experiment with prediction horizons of 3 and 5 for brute-force, and do not

experiment with 7 due to computational tractability. For RS and MCTS, we experiment

with prediction horizons of 5 and 7, all with a computation budget of 20,000 simulations.

We show in Fig. 7.7 two excavation trajectories, one with successfully excavated objects and

one that jammed, by MCTS with k = 5 tracking the deep trajectory.

Comparing Follow against the other two baselines, it is obvious that the use of wiggling

helps reduce large contact forces, without which excavation always fails for a deep trajec-

tory. All of our planners, with different settings, are able to significantly outperform the

baselines. The results for brute-force demonstrate that using a prediction horizon of 5 in-

stead of 3 improves excavation performance. Using an even longer prediction horizon of 7

shows different results for RS and MCTS, where RS is improved and MCTS is slightly worse.

Overall, brute-force with k = 5, RS with k = 7, and MCTS with k = 5 achieve the best

performance, but with brute-force using a greater amount of computation (59,049 compared

to 20,000 simulations). We expected MCTS to outperform RS, a simple strategy, but we do

not see such results from the experiments. We think that for the task of excavation, during

the search in MCTS, the node with the lowest average cost might not be along the best

trajectory. For example, an action of going down when the contact force is large, could lead

to large costs on average for all possible future trajectories due to penalty for contact forces.

However, the optimal trajectory might require the action of going down first.

One advantage of the method is data efficiency, where using only a total of about 300

trajectories result in policies that perform significant better than manually designed strate-

gies. The data efficiency of method mainly comes from a model-based formulation and a

well-designed action set of motion primitives where we encode domain knowledge.

We show two common cases that lead to jamming in Fig. 7.8, including a big object on the
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way of penetration and a concave object that catches the digging bucket teeth and results in

excessive contact forces. In the first case, our planner is unable to plan a local trajectory to

get around it, due to limitation in the planning horizon as a longer planning horizon leads

to increasingly inaccurate dynamics predictions. We believe that, in this case, a re-planning

of the global reference path is necessary and we plan to investigate this in the future.

7.7 CONCLUSION

In conclusion, we propose a multi-modal MBRL approach for the task of fragmented rocks

excavation. With a discrete action space of excavation primitives encoded with domain

knowledge and the multi-modal RNN-based dynamics architecture, we show that we can

learn the dynamics function from a small real-world dataset reasonably well to be used

in planning. In addition, our MPC is able to significantly outperform manually designed

strategies for tracking a global reference path, while brute-force, RS, and MCTS do not

differ significantly in performance from each other.

In the future, we would like to extend our work to combine the re-planning of global

reference path when our local planner is struggling, like the planner introduced in Chapter 6.

The results also show that the visual features improve prediction accuracy marginally, and we

would like to investigate better learning of the visual features, possibly by pretraining them

with auxiliary tasks. Finally, we would like to implement our method on real excavators.

One foreseeable challenge is the amount of training data needed compared to a controlled

experiment in this chapter, and we intend to collaborate with industrial partners to scale up

data collection.
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CHAPTER 8: IMMERSIVE COMMODITY TELEPRESENCE WITH THE
TRINA ROBOT AVATAR

This chapter takes a different angle at solving the challenges of completing contact-rich

tasks in the real world. The idea is to leverage human intelligence through tele-operation of

a robot avatar. Immersive robot avatars have the potential to aid and replace humans in a

variety of applications such as telemedicine and search-and-rescue operations, reducing the

need for travel and the risk to people working in dangerous environments. Many challenges,

such as kinematic differences between people and robots, reduced perceptual feedback, and

communication latency, currently limit how well robot avatars can achieve full immersion.

This chapter presents AVATRINA, a teleoperated robot designed to address some of these

concerns and maximize the operator’s capabilities while using a commodity light-weight

human-machine interface. Team AVATRINA took 4th place at the recent $10 million ANA

Avatar XPRIZE competition, which required contestants to design avatar systems that could

be controlled by novice operators to complete various manipulation, navigation, and social

interaction tasks.

The original paper this chapter is reproduced from details the components of AVATRINA

and the design process that contributed to our success at the competition. However, the

paper is the collective effort of a large team and the paper contains sections that I have not

contributed significantly. Instead, I will describe my efforts in the design and control of the

manipulators of the TRINA system and the experience and lessons learned from competing

in the ANA Avatar XPRIZE competition.9

8.1 INTRODUCTION

Telepresence [213], or telexistence [214], aims to enable a human operator to feel as though

they are actually present in a remote robot’s environment through immersive vision and rich

haptic feedback. Teleoperation of mobile manipulators has the potential to aid a wide variety

of applications including telemedicine [20, 215, 216], search-and-rescue operations [217, 218],

and remote environment exploration [219, 220, 221], by leveraging the perception and plan-

ning capabilities of humans. However, telepresence can be hindered by multiple factors such

as kinematic differences between the robot and operator [222], reduced perceptual feedback,

and network latency [223]. In addition, the cost of the robot and teleoperation hardware

9This chapter is reproduced from Joao Marques∗, Patrick Naughton∗, Jing-Chen Peng∗, Yifan Zhu∗,
James Seungbum Nam, Qianxi Kong, Xuanpu Zhang, Aman Penmetcha, Ruifan Ji, Nairen Fu, Vignesh
Ravibaskar, Ryan Yan, Neil Malhotra and Kris Hauser, ”Immersive Commodity Telepresence with the
TRINA Robot Avatar ”. Under review for the International Journal of Social Robots.
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limits the accessibility of telepresence robots. Exoskeletons, which are commonly used oper-

ator hardware for teleoperation [224] in research labs and industrial settings [225, 226], are

not only costly but also require careful setup and calibration to use.

This chapter presents AVATRINA (AVAtar Tele-Robotic Intelligent Nursing Assistant),

shown in Fig. 8.1, an immersive avatar robot operated with low-cost commodity hardware.

The original paper that this chapter is reproduced from includes a complete design of the

system, including its optimized kinematics, sensing and perception systems, and user in-

terfaces, which creates an immersive telepresence experience, where the main contributions

are:

• An immersive, novice-friendly teleoperation system with human-like manipulation,

communication, and sensing capabilities, controlled by lightweight commodity oper-

ator hardware.

• A set of task-oriented metrics for optimizing robot hardware design for immersive

teleoperation, complementary to traditional workspace analysis.

• Human subjects studies to validate the design of our perception system, showing that

matching the distance between the robot’s eye cameras to the operator’s interpupillary

distance and providing more degrees of freedom with which the operator can move the

robot’s head can improve depth perception during teleoperation.10

In this chapter, however, I will only focus on the components that I have contributed

significantly, which include the design and control of the manipulators.

Team AVATRINA, a collaboration between the University of Illinois and vRotors11, built

AVATRINA to compete in the ANA Avatar XPRIZE competition12 finals. This competition

aimed to accelerate the development of robot avatar technologies, improving the quality

and variety of haptic sensing and rendering devices, and promoting fundamental research

in system integration, networking, and virtual reality to create responsive, immersive, and

intuitive telepresence systems. Our team achieved 4th place and was among the 4 teams that

completed all 10 tasks at the competition13. In this chapter, I will also share the insights

and experience gained from participating in the ANA Avatar XPRIZE competition and on

how to design an immersive Avatar system.

10While this part is included in the original paper this chapter is reproduced from, I personally did not
contribute significantly to this part, and thus this part is omitted in this thesis due to the length of this
chapter.

11https://www.vrotors.com/
12https://www.xprize.org/prizes/avatar
13https://youtu.be/lOnV1Go6Op0?t=28364
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Figure 8.1: An overview of the AVATRINA robot and operator station. The robot is configured
at the “home” configuration. [Best viewed in color.]

8.2 RELATED WORK

Avatar embodiments can take many forms depending on their intended applications. Many

of the avatars presented during the DARPA robotics challenge [227] opted for humanoid

bipedal robots with an alternative wheeled locomotion mode for faster traversal of flat ground

and more stable environmental interaction. Two examples are team IHMC’s entry [228]

and KAIST’s DRC-HUBO+ [229]. Other notable designs include RoboSimian’s quadruped

design [230] and Team NimbRo’s wheeled centaur-like platform Momaro [231].

These robots were designed to operate in challenging locomotion scenarios and were pri-

marily focused on efficient task completion under adversarial networking and environmental

conditions. As such, their UI was focused on redundancy and robustness, with some inter-

faces requiring up to seven operators to man a single robot [231]. Furthermore, these robots

fulfilled no social function and thus lacked expressive features for communication with remote

individuals.

Avatars are not restricted to enabling humans to perform remote or dangerous activities.

They can also be used to help people with disabilities expand their independence in perform-

ing activities of daily living and working [232, 233]. Being designed for indoor use, however,

imposes other important constraints on these robots, such as maximum size, weight and

cost, and introduces different manipulation requirements [234].

Yet other platforms focus on operator immersion and on the avatar’s socially expressive
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capabilities. The TELESAR VI platform [235], for instance, follows a legged humanoid

design with human proportions, but forgoes practical arm payloads and robot mobility in

favor of enabling expressive arm, torso, finger and hand motion. Its interface also prioritizes

immersion, using a VR Head Mounted Display (HMD) and haptic gloves which render finger

forces, vibrations, and temperatures sensed from embedded sensors in the anthropomorphic

avatar hand.

The ANA Avatar XPRIZE finals was a culmination of efforts to unify these research direc-

tions into socially capable, task efficient, and immersive robot avatars. Since the competition

did not require challenging environment traversal, most teams opted for wheeled robot bases

[236, 237, 238]. Indeed, as noted by [237], avatar embodiments that relied solely on legged

locomotion all irrecoverably fell during the competition. Furthermore, as social tasks were

an integral part of this competition, most embodiments paid special attention to properly

rendering the operator’s face and voice.

Out of the 4 teams that completed all 10 tasks in the competition, 3 used VR headsets

for immersive operation (NimbRo [236], Pollen Robotics and AVATRINA [238]), while Team

Northeastern’s [237] system used an ultra-widescreen monitor for visualization. The teams

that used VR employed different strategies to reconstruct the operator’s face without the

headset on the robot, while Team Northeastern did not have to address this problem.

The user interfaces of the top 3 teams all used some form of exoskeleton for force haptic

transmission to the arms and fingers. NimbRo’s consisted of a rig with additional robot

manipulators mounted to the operator’s arms to render force, Team Northeastern leveraged

mirrored hydraulic mechanisms between operator and avatar for rendering arm and finger

forces, and Pollen Robotics used a 1 DoF elbow mounted exoskeleton to provide arm force

feedback. AVATRINA was the only team to exclusively use vibratory and visual cues for

rendering arm forces to the operator and complete the full course.

Furthermore, these systems used different methods for remote texture sensing - Pollen

Robotics and NimbRo used acoustic based sensors [239], while Team Northeastern leveraged

both contact acoustics and sensed vibrations and forces on the hydraulic actuators for iden-

tifying surfaces [237]. Our system captured a high-resolution heightmap of surfaces and used

it to render distinct vibratory and auditory cues for each surface without requiring direct

contact.

8.3 SYSTEM OVERVIEW

This section describes overall design goals for the system and an overview of the major

components. Individual components will be described in following sections.
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8.3.1 System Design Goals

AVATRINA is designed to be a socially-capable robot that can be controlled by a human

operator to navigate and manipulate objects in remote environments designed for humans.

The social capabilities should enable the operator to interact naturally with other human re-

cipients in the remote environment. It should be easy to operate for novice users, accessible to

a wide number of operators, and ergonomic enough for long-term usage. We emphasize that

ergonomic and lightweight user interfaces are necessary to enable longer-term applications

of teleoperation, such as tele-work and data gathering for imitation learning. Lightweight

user interfaces improve scalability to many users and the likelihood of adoption. Moreover,

AVATRINA should be a stable, maintainable platform to enable reproducible research in

tele-nursing, telerobotics, and mobile manipulation for many years.

Our system design goals include:

1. The robot should have similar manipulation capabilities to humans, with human-like

kinematics and load capabilities.

2. The operator station should be comfortable, ergonomic, and lightweight, requiring

minimal setup.

3. The operator interface should be intuitive and immersive.

4. Recipients in the remote environment should feel the operator’s presence.

5. The robot should use as many off-the-shelf parts as possible for ease of construction,

maintenance, and reproduction.

6. The robot should have easily reconfigurable end-effectors and sensors to support dif-

ferent applications.

8.3.2 Overall System Components

The overall system consists of the AVATRINA robot and the operator station, summarized

in Fig. 8.1.

The robot is a bimanual mobile manipulator consisting of two robot arms (Franka Emika

Panda), an omnidirectional mobile base (Waypoint Vector), and a custom 3 DoF anthropo-

morphic head with a custom adjustable baseline stereo camera. Other system specifications

are listed in Tab. 8.1. We support different end-effectors, including the 6 DoF anthropomor-

phic Psyonic Ability hand, the Robotiq 2F-140 and 2F-85 parallel jaw grippers, the Franka

hand, and the Righthand Reflex 3-fingered hand. The default configuration has the Psyonic

113



hand on the left arm and a 2F-140 Robotiq gripper on the right arm. The robot is similar

in size to an adult, standing at 1.85m tall and 0.7m wide, and has a forward reach of 0.5m.

Four ultrasonic rangefinders around the perimeter of the robot provide enhanced situational

awareness. In the default configuration, there is an RGB-D sensor mounted at the wrist of

the right arm for close-range inspection and texture sensing. TRINA can operate for about

2 hours on its onboard battery. The robot is connected to the Internet via WiFi and can

connect to an operator station via a handshake configured through designated servers.

The operator station is designed to consist of commodity hardware, so that the robot can

potentially be connected to any operator with Internet access. It consists of an desktop

PC, a VR head-mounted display (HMD) and controllers, foot pedals, and the SenseGlove

haptic gloves (whose specifications are noted in Tab. 8.1). We support various commercial

VR products such as the Valve Index, HTC Vive Pro, and Meta Quest 2. The poses of

the HMD, controllers, and gloves are tracked by a Vive tracking system. In the default

setup (Fig. 8.1), the operator wears the Valve Index headset, a SenseGlove on their left

hand, and holds a Valve Index controller with their right hand. Fig. 8.2 shows how these

devices are mapped to AVATRINA’s different components to give the operator control over

AVATRINA’s motion.

Figure 8.2: Mapping between operator control devices and AVATRINA’s movement. AVAT-
RINA’s head tracks the VR headset and provides stereo camera feedback. The right VR controller
controls the right gripper, and the right joystick commands the base translation and rotation. The
left anthropomorphic Psyonic gripper tracks the SenseGlove. The foot pedals enable the movements
of the end-effectors. The right controller can also bring up a menu of different semi-autonomous
functionalities. [Best viewed in color.]
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Overall

Length x Width x Height 1.0 m x 0.68m x 1.75m

Weight 157 kg

Manipulation and Locomotion

Payload 3 kg (including gripper)

Forward Reach 0.5m

Max Speed 0.2m/s

Sensors

RGB-D Sensors Configurable, default: 1

Stereo Camera 1

Birds-Eye Cameras 3

Ultrasonic Rangefinders 3

Miscellaneous

Estimated Battery Life 2 hrs

Battery Capacity 1534Wh

Onboard Compute

Main Computer

CPU AMD Ryzen 9 5900X

GPU NVIDIA RTX 3060 12GB

RAM 64GB DDR4 3200MT/s

OS Ubuntu 20.04

Control Computer

CPU AMD Ryzen 7 5800U

RAM 16GB DDR4 3200MT/s

OS Ubuntu 20.04 (PREEMPT RT)

Operator Station Compute

CPU AMD Ryzen 9 5900X

GPU NVIDIA RTX 3090

RAM 32GB DDR4 3200MT/s

OS Windows 11

Operator Station Hardware

Head-Mounted Display Valve Index Headset

Right Hand Tracking Valve Index Controller

Left Hand Tracking Vive Tracker and SenseGlove

Arm Activation Thrustmaster F430 Pedals

Facial Rendering Camera ELP-USBFHD01M-L170

Table 8.1: AVATRINA Canonical Specifications.

8.4 MANIPULATORS

AVATRINA both interacts with and is controlled by people, so the design criteria for its

manipulators differ substantially from typical criteria for industrial robots. The operator is

primarily concerned with the visibility of AVATRINA’s hands and the intuitiveness of the

115



arm control, while the recipient desires a compliant and predictable robot with which they

can safely interact. This section describes how we designed the robot’s hardware and control

software to meet these criteria.

8.4.1 Kinematic Design Optimization

In designing AVATRINA’s manipulation capabilities, we considered several criteria related

to the mounting of the arms to the torso, including:

• The arms should have a large dexterous workspace, and be able to track the operator

smoothly through that workspace.

• The arms should have human-like kinematics to make their behavior predictable for

the operator and recipients.

• During manipulation tasks, the robot should minimize occlusion of the object being

manipulated.

• The robot’s width should be less than 800mm, to enable passing through the Americans

with Disabilities Act (ADA) compliant doors14.

These criteria are highly coupled and often conflict with one another, making it difficult

even for experienced engineers to reason about them through intuition alone. We therefore

employed a co-design approach, using computational methods to optimize free design pa-

rameters (arm and hand mounting) while simultaneously considering the control software in

the evaluation loop [240, 241].

The design parameters θ include the arm mounting SE(3) transform and the 2 gripper

mounting SE(3) transforms. We assumed the arms will be mounted symmetrically, so we

only optimize one shoulder mount and reflect it to obtain the other. To further simplify

the problem, we first optimize the arm mounting transforms, then fine-tune the gripper

transforms.

We propose four metrics to capture our design goals: 1) the robot’s ability to track the

operator, 2) visibility of the grippers, 3) shoulder width, and 4) human-likeness. We manually

proposed a set of promising design parameters θ, shown in Fig. 8.3 guided primarily by

manufacturability constraints, and evaluated these metrics for each candidate design.

14https://www.access-board.gov/ada/
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(a) 45° down (b) Sideways (c) 45° sideways

(d) Forward (e) 45° + 45°

Figure 8.3: Candidate arm mounting poses. Shoulder attachment points are highlighted in red.
[Best viewed in color.]

Design Metrics To evaluate our designs in context, we first record a person teleoperating

a floating gripper in simulation to cover the robot workspace for representative manipulation

tasks, such as tabletop manipulation (Fig. 8.4). Ideally the robot should be able to match

these trajectories with its end-effector (EE). Each trajectory is given by T = (T1, T2, . . . , TN),
a list of N SE(3) transforms expressed in the robot base frame.

For a candidate set of mounting parameters θ we can then simulate tracking the trajectory

using the robot’s arm controller (Fig. 8.4.2). Each subsequent robot configuration qi is

derived by repeatedly applying the controller on the simulated robot state at time i − 1 to

bring the EE towards Ti. The controller biases each joint towards the center of its limits to

aid in redundancy resolution. The resulting joint trajectory Q̂(θ) = (q1, . . . , qN), is thus a

function of θ. For ease of notation we also denote the simulated end-effector trajectory as

T̂(θ) = (T̂1, . . . , T̂N).
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(a) Trajectory A (b) Trajectory B

Figure 8.4: Trajectories used in kinematic optimization and inverse kinematics (IK) evaluation.
Trajectory A is mostly within the robot’s expected workspace; Trajectory B extends further to the
right, testing the robot’s ability to reach farther poses and recover from commands that exceed
workspace limits. [Best viewed in color.]

The operator tracking error (OTE) metric Mt is defined as:

et([R∣p], [R̂∣p̂]) = 1(∥p − p̂∥2 > ϵx

or ∢(R−1R̂) > ϵθ),

Mt(θ) =
1

N

N

∑
i=1

et(Ti, T̂i(θ)).

(8.1)

Here ∢(⋅) indicates the angular deviation of a rotation matrix from the identity. The metric

counts the number of time steps that tracking error exceeds thresholds in either position or

orientation. We use this rather than the sum of pose errors, since small errors will not be

noticed but tracking loss tends to confuse and frustrate the operator. We set the tolerances

to ϵx = 0.05 m and ϵθ = 0.3 rad.

The visibility metric is the fraction of the grippers not occluded by the arms as seen from

the robot’s camera pose as the robot moves along Q̂. The camera pose is defined as the

midpoint between the robot’s two eye cameras while the head points forward. For each

simulated pose, we render the camera image to find the number of gripper pixels visible,

v̂g(q̂), and the number of total gripper pixels that would be visible if the arms were not

present, vg(T̂ ). The occlusion metric is defined as:

Mv(θ) =
1

N

N

∑
i=1

v̂g(q̂i)
vg(T̂i)

(8.2)

The shoulder width metric Mw is defined by the maximum horizontal extents of the arms

in the most compact home configuration. The human-likeness metric Ml is a subjective
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measure, which is the average human-likeness score (on a scale of 1-5; higher is better) given

by lab members after examining the robot’s appearance and behavior in simulation.

Trajectory A Trajectory B
Mount Mw ↓ Ml ↑ Mt ↓ Mv ↑ Mt ↓ Mv ↑
45° down 68 cm 4.00 0.13% 39.19% 42.76% 31.39%
Forwards 68 cm 2.25 14.88% 37.75% 55.45% 31.71%
Sideways 91 cm 3.25 29.60% 49.17% 43.33% 38.86%
45° sideways 79 cm 3.25 10.92% 41.26% 29.82% 35.02%
45° + 45° 79 cm 2.2 0.07% 36.30% 38.17% 32.71%

Table 8.2: Arm mounting evaluation. Lower width (Mw) and tracking error (Mt) is better; higher
human likeness (Ml) and visibility (Mv) is better.

Results First, we compared five different arm mounting configurations and evaluated them

based on Mw, Ml, Mt, and Mv. The Low mount (Fig. 8.5) was chosen arbitrarily for this

evaluation. Results are shown in Tab. 8.2. We chose 45° down by prioritizing width, human

likeness, and tracking error in the workspace in front of the robot (Trajectory A), while

maintaining acceptable error in out-of-range reaching tasks (Trajectory B) and comparable

visibility with other mountings that maintain good tracking.

We then compared different gripper mounting configurations (shown in Fig. 8.5) using

Mt and Mv. For the right hand, we observed little difference between the low and high

mounted grippers, as seen in Tab. 8.3, while the end mount exhibits especially poor tracking

performance. This is because when oriented forward for tabletop manipulation tasks, the

gripper places two of the wrist joints in near-singularity, causing many tracking failures.

Ultimately, we chose the low mount to reduce wrist interference with obstacles when ma-

nipulating objects on a table. For both hands, the tracking metrics indicate that we should

choose the higher mount. However, we noticed that this mount would result in collisions

with the environment during tabletop manipulation tasks, a failure mode not captured by

our metrics. Therefore, we chose the low mount despite it having slightly worse metrics.

For future work, this indicates that metrics should incorporate more context of the robot’s

tasks, such as expected environmental constraints.

8.4.2 Arm Control

AVATRINA’s arms are to track target end effector poses. Our arm control algorithm

consists of two levels. On the higher level, an inverse kinematics (IK) solver computes
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(a) Low mount. (b) High mount. (c) End mount.

Figure 8.5: Candidate gripper mounts.

Side Mount Trajectory A Trajectory B
Mt ↓ Mv ↑ Mt ↓ Mv ↑

Right
low 1.02% 0.566 28.41% 0.570
high 0.22% 0.520 24.59% 0.549
end 76.64% 0.343 82.59% 0.422

Left
low 0.14% 0.448 27.44% 0.711
high 0.08% 0.365 7.77% 0.617
end 44.86% 0.214 36.54% 0.322

Table 8.3: Gripper mounting evaluation results.
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desired joint positions qdesired to track the target end effector pose Ttarget at 125 Hz for each

arm independently. qdesired is then sent to the lower level controller if there is no collision.

On the lower level, we compute joint torques τj to track qdesired at 1 kHz while also allowing

for compliant motion to ensure safety during contacts.

Inverse Kinematics for Teleoperation Real-time tracking with IK is a challenging

problem due to discontinuities, singularities, and local minima, which can cause abrupt

movement or loss of tracking. To deal with this problem, we explored two different ap-

proaches to IK solving: modifying the target poses to ensure dexterity [242], and using a

quadratic program IK solver that enforces smooth behavior [243].

In the first approach, we apply the measure of manipulability (MoM) method proposed

by [242] that modifies the target transform sent to a standard Newton’s-method-based IK

solver [244] such that the measure of manipulability of each arm remains above a threshold.

The measure of manipulability (Mm) is given by

Mm(q) =
√
detJJT . (8.3)

where J ≡ J(q) refers to the Jacobian of the arm relating its 7 joint velocities to the end

effector angular and translational velocity. Mm is positive semi-definite, reaching zero only

when the robot arm is in singularity.

MoM prevents Mm from decreasing below a small threshold by 1) computing a correction

motion that zeros out any components of the commanded motion (in task space) that de-

crease Mm if the arm is at or below this threshold, and at the same time, 2) introducing

a small motion that pushes the robot in the direction of increasing Mm. We refer to the

original paper [242] for more details.

The second approach uses a quadratic program (QP) solver based on the resolved-rate

controller described in [243]. At every time step, a step in joint space δq is found as the

solution to a constrained optimization problem where the objective function consists of

tracking accuracy, joint velocity penalty, and a joint angle bias for redundancy resolution.

The constraints encode the arm’s joint limits:
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argmin
δq

∥δrtarget − Jδq∥2Wr

+ ∥δq∥2Wq

+ ∥q + δq − qbias∥2Wb

subject to qmin ≤ q + δq ≤ qmax,

(8.4)

where ∥r∥2W = rTWr is the weighted squared norm of a vector. This optimization prob-

lem is solved with a generic convex optimization problem solver [245] in real-time. In our

implementation, we empirically chose Wr = I,Wq = 0.02I, and Wb = 0.0005I.
For both approaches, we considered the following bias configurations:

• Neutral bias: Bias solvers towards the middle of the arm’s joint limits.

• Shoulder angle bias: We developed a heuristic for the shoulder angle qshoulder of the

robot based on the target end effector transform, which guides how far outwards the

elbow should swing. The IK solver biases the robot’s shoulder angle towards this value.

We evaluated the two different approaches for solving IK under different bias configurations

by comparing the tracking metric Mt. The optimized robot design discussed in Sec. 8.4.1

and the same two trajectories (shown in Fig. 8.4) were used for all the experiments in this

section. The results are reported in Tab. 8.4. QP generally provides lower tracking error,

while MoM achieves faster computation. Tab. 8.4 also shows that the shoulder heuristic joint

biasing generally improves tracking performance without sacrificing computation speed. One

reason for this is that seeking more “natural-looking” elbow poses tends to help the robot

avoid inverting the shoulder and elbow joints, as seen in Fig. 8.6, preventing the arm from

getting stuck in regions of low dexterity. This is especially true for QP, which can allow

the arm to enter singular configurations to achieve better tracking in the short term, at the

expense of losing tracking at later points in the trajectory. We used biased MoM during the

XPRIZE finals competition to ensure fast tracking, whereas the biased QP method is used

in this chapter’s design evaluation (Sec. 8.4.1).

Low level torque control To track desired joint positions (qdesired) coming from the

inverse kinematics controller, the low-level controller computes joint torques τtarget, which

are sent to the robot’s low level controller at 1 kHz. The raw commands coming from the

high level controller are passed through a complementary filter, and target joint velocities
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Trajectory A Trajectory B
Solving Method Bias Mt ↓ Time (ms) ↓ Mt ↓ Time (ms) ↓
Measure of Manipulability Neutral 11.17% 0.41 32.60% 1.00
Quadratic Programming Neutral 0.13% 1.32 44.47% 2.72
Measure of Manipulability Shoulder angle 2.12% 0.40 33.60% 0.91
Quadratic Programming Shoulder angle 1.22% 1.37 28.42% 2.97

Table 8.4: Tracking error rate for IK solver and bias heuristics, on two trajectories. Time is
average time per loop iteration.

(a) IK with neutral bias “picks” the wrong direction
for the shoulder.

(b) IK with heuristic bias keeps the shoulder angle
on the correct side.

Figure 8.6: The specific failure case in trajectory B accounting for the poor performance of IK
solving without heuristic biasing. See Tab. 8.4 for full results. [Best viewed in color.]
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are computed as the velocity of the filtered target position using a finite difference method.

τtarget is computed by

τpd = kp∆q + kd∆q̇ + FF(q, q̇),
τ̄target = plimit(τpd, q̇) + cq(q) + cq̇(q̇),
τtarget = clamp(τ̄target, τmax, τmin),

(8.5)

where it uses a PD controller with the feedforward terms while respecting joint position,

joint velocity, power, and torque limits. Here FF(q, q̇) is the feedforward term, computed

based on the dynamics model of the robot (provided by the manufacturer) to compensate

for gravity and Coriolis terms. To account for joint position and velocity limits, we use a

quadratic control barrier function, which imposes a smooth increase in resistance as the joint

is pushed towards its position (resp. velocity) limits:

cx(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−K (xmax−x
ϵx
)2 if x > xmax − ϵx

K (xmin−x
ϵx
)2 if x < xmin + ϵx

0 otherwise,

(8.6)

where the parameters K, ϵx, xmax, and xmin can be tuned based on the quantity being limited.

The Franka Emika Panda arm also has built-in joint power and torque limits for safety

reasons. Violating these limits causes the arm to engage a protective stop, causing the

operator to lose control of the arm temporarily. To prevent this, we add power and torque

limits to our controller. The power limit is implemented as

plimit(τ, q̇) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

pmax/q̇ if τ q̇ > pmax

τ otherwise,
(8.7)

and the torque limit clamps between minimum and maximum torques. Here, q̇target is esti-

mated by taking a finite difference derivative of qtarget.

8.5 HAND CONTROL

In this section, we describe how the operator controls and receives force feedback from

AVATRINA’s end effectors. The operator controls AVATRINA’s parallel-jaw gripper by

pulling a trigger on their right-hand VR controller. Control of the anthropomorphic Psyonic

Ability hand is more complex, requiring retargeting from the SenseGlove’s sensing to the
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hand’s actuating capabilities.

8.5.1 Hand Motion Retargeting

The goal of hand motion retargeting is to map the motion of a high-DoF (21) human

hand to a low-DoF (6) anthropomorphic gripper. The SenseGlove tracks 4 degrees of free-

dom (three in flexion, and one “splay”) for each finger. The full hand motion retargeting

problem is defined as finding a mapping G between the 20 SenseGlove readings qglove to 6

gripper motor positions, qgripper, shown in Fig. 8.7. Note that the gripper uses a transmission

mechanism so that a single motor command bends both joints in each finger in a synergistic

manner.

Methods We seek a mapping of the form

G ∶ (R4 → R)4 × (R4 → R2), (8.8)

where each of the four fingers maps from four SenseGlove DoFs to one Psyonic DoF, while

the thumb maps from four SenseGlove DoFs to two thumb DoFs.

Figure 8.7: Hand Motion Retargeting. Each finger is measured with 4 DoFs on the SenseGlove
(left), but the Psyonic gripper (right) only has 2 DoFs for the thumb (red) and 1 DoF per every
other finger (blue). [Best viewed in color.]

To find this mapping, we designed a set of 15 gripper poses, shown in Fig. 8.8, that cover

the Psyonic’s workspace and important grasps such as key and power grasps. To adapt to

each operator’s hand, a calibration procedure is performed. The operator first mimics the

gripper poses while wearing the SenseGlove and the corresponding SenseGlove readings are

recorded. Not all fingers are considered for each calibration pose, since they may be difficult

to imitate or irrelevant to the current calibration step. The mapping G is then learned by
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supervised learning to minimize calibration error. Note that we learn a mapping for each

finger and thumb individually.

The gripper poses used were designed to match the human poses visually; however this

may not capture the operator’s intent. For example, for a pinch grasp on a thin object, the

operator may want to pinch harder on an object, but once the operator’s fingers touch, the

SenseGlove is not able to detect an intent to apply extra force. To compensate for this, we

tweaked the target gripper joint angles to form a set of “biased” calibration poses in order

to increase grasp success. Fig. 8.9 demonstrates how joint biasing is set up.

Results We evaluate the calibration performance on a different set of 4 grasps, shown in

Fig. 8.10. First, we hand designed Psyonic poses for the four grasps. Then, each oper-

ator is instructed to physically perform each grasp while wearing the SenseGlove, and the

SenseGlove joint angles are recorded. Finally, the recorded SenseGlove angles are transferred

to the Psyonic using the mapping calibrated for the operator. These angles are compared

against the hand-designed poses using two metrics: the mean absolute error (MAE) of the

joint angles, and the grasp success score. The grasp success score is defined by using the

Psyonic to pick up the physical object and repeatedly shaking the object with increasing

intensity, as shown in Fig. 8.11. The number of shaking rounds before the object is dropped,

up to 5, is recorded as the grasp success score. Two shaking trials are conducted for each

grasp.

Biasing Model Grasp Success Score Error (rad)

Pinch 1 Pinch 2 Cube Power

manual None 3.50 5.00 4.00 5.00 -

unbiased GP 2.67 5.00 3.00 5.00 0.317
unbiased KRidge 2.17 4.67 2.00 5.00 0.217
biased GP 4.17 4.83 3.33 5.00 0.402
biased KRidge 3.50 5.00 3.50 5.00 0.282

Table 8.5: Gripper calibration evaluation on four grasp attempts. Scoring represents the number
of shaking cycles survived, averaged across six trials with three different operators. Error is grasp
pose MAE averaged over all joints.

We experiment with two different regressors: Gaussian process regression and kernel ridge

regression [184], and test each regressor using the unbiased and biased calibration poses. The

calibration results for 3 researchers on this project are shown in Tab. 8.5. Overall, the two

regressors perform similarly in grasp success, and both of them are helped by biasing the

calibration poses. In terms of MAE, kernel ridge regression performs better than Gaussian
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Figure 8.8: The hand calibration poses used. Human hand and target Psyonic pose are shown.
Green highlight shows fingers that are considered for the given calibration pose. A red dot indicates
that joint angle biasing was applied to the pose. [Best viewed in color.]
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Figure 8.9: Example for how the joint angles were biased for hand calibration. Bias effect is
exaggerated for clarity. [Best viewed in color.]

Figure 8.10: Pairs of poses used to test grasping. From left to right: Pinch 1, Pinch 2, Cube,
Power.
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Figure 8.11: Illustration of shaking procedure. Robot picks object up from a predefined pose (in
Fig. 8.10), then shakes in a square motion in the air with increasing intensity.

process regression. Using biased calibration increases grasp success, at the cost of increasing

MAE. We decide to use biased calibration since the slight mismatch in angles could be

compensated for by the operator.

8.6 END-TO-END EVALUATION: ANA AVATAR XPRIZE

Our team competed in the ANA Avatar XPRIZE finals competition using the AVATRINA

robot in November of 2022. This competition required teams to train a new operator (a

judge) on how to use their robot in 45 minutes to complete 10 different tasks in 25 minutes

that ranged from navigation, to manipulation, to human interaction. The operator and

recipient judges could also award up to 3 and 2 points respectively based on subjective

impressions. More details on the tasks and scoring criteria can be found in the summary

paper in this special issue [246].

8.6.1 Team AVATRINA Operator Training Procedure

During the competition, teams had 30 minutes to set up their robot and operator station,

and 45 minutes to train a judge recruited by XPRIZE to use the robot to complete the 10
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(a) Task 4: Switch (b) Tasks 6 and 7: Canister (c) Task 8: Narrow Passage

(d) Task 9: Drill Pickup (e) Task 9: Drill Use (f) Task 10: Rock Texture

Figure 8.12: Images of AVATRINA executing some of the key tasks during the XPRIZE compe-
tition. [Best viewed in color.]

tasks as quickly as possible. To optimize our use of this time, we developed a training protocol

to get the operator comfortable with controlling AVATRINA and allow them to practice the

competition tasks. We rehearsed this procedure many times before the competition so that

each team member knew their assigned role. One person was responsible for walking the

operator through each of the basic functionalities of AVATRINA, then a different team

member walked them through strategies used to complete each task. Tab. 8.6 outlines the

training procedure.

8.6.2 Team Results

With a total score of 14.5/15 points, team AVATRINA came in 4th place overall and was

one of four teams to complete all 10 tasks. Fig. 8.12 shows AVATRINA completing some of

the tasks on the course. Our system proved easy to learn in the competition, giving judges

ample time during the training period (20+ minutes) to practice on the actual competition

tasks.

On our first official run, the operator successfully completed all 10 tasks. The operator

made use of both the Psyonic gripper and the parallel jaw gripper for completing different

tasks depending on which gripper was best suited for each task, highlighting the benefit of

our asymmetric design. During the final task of texture sensing, they also used the assistive
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Step Time (min)

Measure operator IPD. 1
Show operator video of AVATRINA being teleoperated. 2
Don and calibrate the SenseGlove. 7
Don and adjust the HMD. 2
Learn and practice controlling AVATRINA’s head. 2
Learn and practice clutching each arm. 4
Learn and practice “homing” the arms. 1
Show warnings when AVATRINA enters a fault state. 1
Learn and practice moving AVATRINA’s base. 2

Practice manipulating canisters and feeling weight. 10
Practice picking up and using drill. 8
Practice scanning for and feeling rock texture. 5

Table 8.6: Outline of the training procedure used at the XPRIZE competition.

texture mode to scan and feel the textures of the various rocks. Interestingly, after scanning,

the operator opted to disable the assistance to perform the final grasp, suggesting that more

work needs to be done to automatically detect when the operator intends to use different

assistive features. The competition conditions provided an unreliable network connection

during this run, so we disabled our facial rendering pipeline to minimize the system’s required

bandwidth. Despite this measure, the operator station still lost connection to AVATRINA

partway through the run, which was resolved after a few minutes via an operator-requested

manual restart of the operator station.

During our second run, our network connection was more stable, and our new operator

completed tasks more aggressively, allowing them to reach the start of Task 10 within ap-

proximately 12 minutes. While attempting this task, AVATRINA’s arm collided with the

environment with high force, causing it to engage mechanical brakes. Fig. 8.13 shows the

operator’s view after this happened. Since the arm could not be remotely recovered, this

prevented the operator from further using AVATRINA’s right arm. The operator tried to

use the left arm to finish the task, but since there was no texture sensor on this arm, they

were ultimately unsuccessful.

Further, we demonstrated that all 10 tasks could be completed without using arm force

feedback mechanisms, indicating that lightweight interfaces can still be used to great effect for

teleoperation. However, the emergency stop failure demonstrates the importance of designing

remote resets into complex telerobotic system such as AVATRINA. Sensor-enabled collision

avoidance strategies during driving and manipulation could have also avoided the failure.
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Figure 8.13: The operator’s view after AVATRINA’s right arm engaged mechanical brakes in
response to excessive force. [Best viewed in color.]

8.7 DISCUSSION AND LESSONS LEARNED

In this section, we offer our ideas of what the important considerations for building a

successful Avatar robot are, lessons learned from the competition, and future directions.

8.7.1 One-to-one Correspondence

Multiple other teams have argued that making the mapping from operator to robot as

simple [237] and as close to an identity transform as possible [236] maximizes operability

and makes the system easy to learn. AVATRINA departs from this philosophy slightly by

providing a user-configurable offset between the operator’s head and AVATRINA’s head,

and by using a clutch-based, relative pose tracking system to control the arms. Both of

these decisions were mainly motivated by the embodiment gap between AVATRINA and the

operator: because the capabilities of AVATRINA do not exactly match those of the operator,

AVATRINA often must complete tasks somewhat differently than a person would with their

own body. For example, since the cameras and HMD used have a smaller field of view than

a person does, the operator has to make more extreme movements with their head than

they would in real life to gather the same amount of information or to achieve a satisfactory

viewpoint to complete a task, which can be uncomfortable. The user-configurable offset

between the operator’s head and AVATRINA’s head can alleviate some of this discomfort.

A similar pattern is observed for AVATRINA’s arms, especially when using the parallel jaw

gripper which functions much differently from a hand.
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Despite these differences, we observed that many novice operators were able to quickly

learn how to use the system, which suggests that one-to-one correspondence is not strictly

necessary for task proficiency. This suggests an opportunity to improve operator ergonomics

without sacrificing avatar capability, which must be considered more seriously if extended

operation is required, or if the robot must complete a task in a manner that would be

uncomfortable for a person.

8.7.2 Force Feedback

Teams at the competition adopted two different philosophies for force feedback to the

operator. While many teams provided force feedback through exoskeletons, our team was

the most successful system that adopted commodity VR hardware that does not offer force

feedback. This suggests that while the lack of force feedback reduces the telepresence of the

operator, novice operators are still able to complete complex manipulation tasks quickly.

Since the comparatively low cost of these user interfaces could provide broader access to

avatar technology, this presents motivation to further improve operator capabilities using

accessible interfaces.

8.7.3 Autonomous Functions

The system we deployed at the XPRIZE finals incorporated some semi-autonomous func-

tions, such as automatically returning the arms to the home configuration when the operator

clicks a button. However, this was a small subset of functions we created during develop-

ment, and we limited these functions to the most helpful subset to avoid overwhelming the

operator and to improve training speeds. The tasks chosen by XPRIZE were sufficiently

straightforward that autonomous assistance was not particularly helpful in many cases. For

tasks that require more precision, such as handling hazardous or fragile materials, shared

control may be more useful. Also, coordinated tasks like bimanual manipulation may also

see more of a benefit from shared control. Moreover, the XPRIZE provided access to a rela-

tively high bandwidth, low latency network, whereas less stable networks may render direct

teleoperation difficult or even impossible. Autonomous and semi-autonomous functions may

also be preferable for situations with unstable networks.
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8.7.4 Robustness

System robustness in teleoperated systems is crucial, and although we performed signifi-

cant amounts of testing and refinement of our system in the lab, human operators can trigger

many unexpected conditions. Our system failure during the 10th task on Day 2 was due

to an unrecoverable mechanical lock of the arm. Had the Franka Emika Panda arms pro-

vided an API to recover from such a state or had we developed more autonomous recovery

protocols [236], the operator could have likely resumed the task.

8.7.5 Testing

In preparation for the XPRIZE competition, our team regularly tested our system under

simulated competition settings. This allowed us to find and address false assumptions we had

made about our system and the tasks, and gave us many opportunities to show our system to

new operators, who often gave useful suggestions for new features or improvements. Frequent

testing also helped to make set up of the system and training of the operator routine so that

both could be done quickly and efficiently at the competition.

8.8 CONCLUSION

In this chapter, we presented an immersive, novice-friendly avatar system with human-like

manipulation, communication, and sensing capabilities. Our system adopts exoskeleton-free

operator hardware with commodity VR equipment and was the most successful exoskeleton-

free avatar at the ANA Avatar XPRIZE competition. We believe this is essential for de-

ploying Avatar robots in the world in the future where people can have easy access to the

robot anywhere there is Internet connection. Finally, we offer our insights on how to build

a successful immersive avatar system and lessons learned from the ANA Avatar XPRIZE

competition.
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CHAPTER 9: CONCLUSION

In this thesis, I demonstrate the use of gray-box learning and meta-learning to improve

data efficiency on multiple challenging contact-rich tasks, including locomotion on and ma-

nipulation of granular media, learning visuo-tactile heterogeneous deformable object models,

and auscultation. I also demonstrate my efforts in designing a human-in-the-loop system for

contact-rich tasks and present the AVATRINA robot that achieved 4-th place in the ANA

XPRIZE Avatar Challenge.

Next, I first suggest some future directions closely related to the research directions pre-

sented in this thesis and discuss more generally some of my thoughts towards future robotics

research.

9.1 FUTURE DIRECTIONS

More Accurate Granular Media Contact Models and Online Contact Model

Adaptation In Chapter 2, the proposed granular media contact model assumes that the

stick-slip behavior is the dominant phenomenon. However, as we have discussed in Chap-

ter 2, other effects such as memory effects can also be significant, and a contact model that

considers these effects would further improve the accuracy of the simulator. This could

be potentially tackled by employing a learning model for the feasible wrench space that is

history-dependent. However, the challenge here is that the data required for learning such

dependence could be large. In addition, while these wrench spaces can be carefully identified

in the lab setting, a robot that operates in the real world would almost never encounter the

exact same granular media whose wrench space would deviate from those learned in the lab.

This challenge could be potentially tackled by applying a meta-learned wrench space model

and performing online adaptation in a data-efficient manner.

Build Deformable Object Simulator from Manipulation Data While we set up

a data collection apparatus for obtaining point poking experience with deformable objects

in Chapter 4, the more naturalistic data collection strategy would be to obtain data from

general manipulations, e.g. while a robot is grabbing an object with a gripper. This involves

two main challenges. The first challenge is with sensing and perception, where the object

is in gross motion, with visual occlusions and multiple contact locations. To deal with this

challenge, one needs to leverage recent advancements in visual segmentation, tracking, and

tactile sensing. Another challenge is solving the inverse problem - the collected data will

no longer necessarily have point poking experience, and the point poking model needs to be

135



estimated from contact data with robot manipulators. In addition, the current simulator

only supports rigid-deformable object interaction, and an extension is to also support rigid-

rigid and deformable-deformable object interactions. This would require the simulator to

not just solve force from surface displacements, which is what is currently done, but also

solve force and surface displacements at the same time.

Vision-and-Tactile-based Adaptive Scooping System In the scooping system pre-

sented in Chapter 6, the signal for the surrogate model to adapt is the scooped volume,

which contains a small amount of information. However, the close interaction of the scoop

with the terrain during scooping contains very rich information about the latent variables

that characterize the terrain, and including this information in the surrogate model is likely

going to improve adaptation. While deep kernels are not very flexible for including such

additional information, alternative classes of methods based on neural networks might be

preferred. In addition, instead of planning open-loop reference trajectories, a close-loop

scooping strategy that uses vision and tactile information to adapt while scooping would

further accelerate adaptation and give more optimal scooping policies.

9.2 DISCUSSION

On the spectrum of learning vs modeling, I believe the future of robotics would be some-

where in the middle where physics and data would complement each other in the best way

possible in the entire stack of the robot pipeline, as advocated by this thesis. To achieve

this, new methods and frameworks will be needed to combine data and physics knowledge

in a principled way, without hand-engineering models for each different task. Based on the

topics and applications that I discuss in this thesis, here I also list a few exciting general

future research topics.

Online Gray-box Learning of Novel Categories In this thesis, gray-box learning is

done via hand-designed gray-box models. However, these models would only work for the

narrow set of objects and environments that the model is designed for. On the other hand,

pure black-box learning has the potential to learn arbitrary models given enough data. How

to find a middle ground between these? Can we build gray-box models that are general

to different types of physical phenomena but still enjoy the benefits of the structure given

by the physics principles? In addition, can the robot also adjust the complexities of the

gray-box model based on the amount of online data to embed Occam’s Razor?
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Gray-box Policy Learning Gray-box learning is mainly explored in the context of dy-

namics learning in this thesis. However, it is not clear how to integrate the knowledge of

physics into reinforcement learning policies that are notoriously data-hungry.

Continual learning. The framework of meta-learning aims to accelerate online learning

of single tasks using priors learned from offline data. For example, in Chapter 6, once the

deep kernels are trained, the hyperparameters remain fixed. However, humans and animals

perform learning constantly using new data and experience. Continual and lifelong learning

have the potential to empower robots to do the same but this field is still at its early stage.

Active Sensing in the open world. In most of the chapters in this thesis, the training

data is a carefully curated dataset collected in a very controlled environment. How would

a robot be able autonomously to explore the unstructured open world and build models of

the world? This would require that the robot has a rich set of prior skills and knowledge.

Different from obtaining prior knowledge from physics or offline data as done in this thesis

on specific tasks, this would require a suite of general knowledge.
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