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Abstract

With the unprecedented growth of the E-Commerce market, robotic warehouse au-

tomation has attracted much interest and capital investments. Compared to a con-

ventional labor-intensive approach, an automated robot warehouse brings possible

benefits such as increased uptime, higher total throughput, and lower accident rates.

To date, developments in warehouse automation are mostly performed in aspects of

inventory mobilization and object picking.

Recently, one emerging area that attracts a lot of research attention is the auto-

mated packaging or packing, a process during which robots stow objects into small

confined spaces, such as shipping boxes. Automatic item packing is complimentary

to item picking in warehouse settings. Packing items densely improves the storage

capacity, decreases the delivery cost, and saves packing materials. However, it is a

demanding manipulation task that has not been thoroughly explored by the research

community. With the unprecedented growth of the E-Commerce market, robotic

warehouse automation has attracted much interest and capital investments. Com-

pared to a conventional labor-intensive approach, an automated robot warehouse

brings possible benefits such as increased uptime, higher total throughput, and lower

accident rates. To date, developments in warehouse automation are mostly performed

in aspects of inventory mobilization and object picking.

Recently, one emerging area that attracts a lot of research attention is the auto-

mated packaging or packing, a process during which robots stow objects into small

confined spaces, such as shipping boxes. Automatic item packing is complimentary

to item picking in warehouse settings. Packing items densely improves the storage

capacity, decreases the delivery cost, and saves packing materials. However, it is a

demanding manipulation task that has not been thoroughly explored by the research
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community.

This dissertation focuses on packing objects of arbitrary shapes and weights into

a single shipping box with a robot manipulator. We seek to advance the state-of-the-

art in robot packing with regards to optimizing container size for a set of objects,

planning object placements for stability and feasibility, and increasing robustness of

packing execution with a robot manipulator.

The three main innovations presented in this thesis are:

1. We are the first to implement a set of constraints into a packing planner, so

that the resulting packing placements are stable and collision-free with a robot

manipulator. Experimental evaluation of the method is conducted with a real-

istic physical simulator on a dataset of scanned real-world items, demonstrating

stable and high-quality packing plans compared with other 3D packing meth-

ods.

2. Existing packing planner assumes the sequence of the packing can be controlled.

However, in many cases, a controllable arrival sequence may not be practical.

We formulate two variants of packing problems in which the set of items is

known, but the arrival order is unknown. The goal is to certify that the items

can be packed in a given container, and/or to optimize the size or cost of a

container. That way, the items are guaranteed to be packable, regardless of

arrival order.

3. We evaluate the proposed planner under real-world uncertainties such as vi-

sion, grasping, and modeling errors. We build hardware and software testbed

that is fairly representative of current state-of-the-art sensing, perception, and

planning for warehouse manipulation. A systematic evaluation of the testbed

is then performed to study the sources of error and models their magnitude.

v



Robustness measures are proposed to improve the packing success rate under

such errors.

Overall, empirical results demonstrate that up to 98% success rate can be achieved

on a physical robot despite real-world uncertainties, demonstrating that these con-

tributions have the potential to realize robust, dense automatic object packing in

warehouses.

vi

hause
Sticky Note
don't need to say "in warehouses"



Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Kris Hauser, for his

continuous support and guidance throughout my Ph.D., and for providing me with

the independence and freedom to work on a variety of research problems. I have been

incredibly fortunate to work with Kris, who has been an excellent role model and

inspired me to pursue a life-long career in robotics.

I would also like to thank my thesis committee members Dr. Missy Cummings,

Dr. Martin Brooke, Dr. Pajic Miroslav, and Dr. Aaron Franklin, for their support

and great advice. I am tremendously grateful for my friends and colleagues from the

Duke Intelligent Motion Lab (Now the Intelligent Motion Lab at UIUC ), including

Yifan Zhu, Gao Tang, Shihao Wang, Joao Marcos Correia Marques and many others.

It has been a great journal pursuing a Ph.D. with all of you, and I continue to learn

andWith the unprecedented growth of the E-Commerce market, robotic warehouse

automation has attracted much interest and capital investments. Compared to a

conventional labor-intensive approach, an automated robot warehouse brings possible

benefits such as increased uptime, higher total throughput, and lower accident rates.

To date, developments in warehouse automation are mostly performed in aspects of

inventory mobilization and object picking.

I want to thank the members of Team Duke when participating in the Amazon

Robotics Challenge 2017 during my first year of Ph.D., Particularly Mark Draelos,

Brenton Keller, Anne Draelos. Taking part in the challenge together was both a

thrilling and humbling learning experience, and you all have inspired me to be a

more exceptional Ph.D. student.

I am also very fortunate to have had the opportunity to get supported and work

as an intern at Amazon Robotics with Jane Shi, an inspiring mentor, and friend.

vii



During my internship, I have enjoyed working with many team members, including

Joey Durham, Chaitanya Mitash, and Sachal Dillion.

Finally, I would like to thank my partner Haizei Zhu for always being there and

for putting my needs in front of his. I would also like to thank my parents and other

family members for their unconditional love and support.

viii

hause
Sticky Note
Is it Haizei?



Contents

Abstract iv

Acknowledgements vii

List of Figures xiii

List of Tables xix

1 Introduction 1

2 Offline Bin Packing under Stable and Robot-feasible Constraints 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Problem Defination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Stability checking . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Manipulation feasibility . . . . . . . . . . . . . . . . . . . . . 13

2.3 Pipeline for Robot-packable Planning . . . . . . . . . . . . . . . . . . 13

2.3.1 Placement sequence . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Generating ranked transforms . . . . . . . . . . . . . . . . . . 15

2.3.3 Pipeline summary and fall back procedures . . . . . . . . . . . 17

2.4 Heightmap-Minimization Heuristic . . . . . . . . . . . . . . . . . . . 18

2.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Robot manipulation feasibility with a vacuum gripper . . . . . 21

2.5.2 Small Order Packing . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.3 Comparisons on Large Itemsets . . . . . . . . . . . . . . . . . 23

2.5.4 Executing Packing Plans in Simulation . . . . . . . . . . . . . 25

3 Robot Packing with Known Items and Nondeterministic Arrival
Order 26

ix



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Constraint formulation . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Nondeterministic problems . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Container optimization variants . . . . . . . . . . . . . . . . . 34

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Offline planner . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Constraint dependency graphs . . . . . . . . . . . . . . . . . . 37

3.4.4 Coverage verification . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.5 Quasi-online packing . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Planning Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Dependency minimization heuristic . . . . . . . . . . . . . . . 47

3.5.2 Matching prior placements . . . . . . . . . . . . . . . . . . . . 48

3.5.3 Container optimization heuristics . . . . . . . . . . . . . . . . 48

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 In-hand Object Scanning via RGB-D Video Segmentation 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 In-hand Object Reconstruction Pipeline . . . . . . . . . . . . . . . . 58

4.3.1 BackFlow Video Segmentation Method . . . . . . . . . . . . . 59

4.3.2 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 64

x



4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 RGB-D in-hand object manipulation dataset . . . . . . . . . . 65

4.4.2 Novice scanning of many items . . . . . . . . . . . . . . . . . 70

5 Systems and Analysis for Robust Robotic Packing 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 System setup and error analysis . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Factors Affecting Packing Success . . . . . . . . . . . . . . . . 77

5.4 Error reduction methods . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Open-loop packing baseline . . . . . . . . . . . . . . . . . . . 80

5.4.2 Closed-loop packing . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.3 Robust planning . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.4 Closed-loop packing and robust planning . . . . . . . . . . . . 84

5.5 Analysis and experimentation . . . . . . . . . . . . . . . . . . . . . . 84

5.5.1 Itemset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 Uncertainty evaluation . . . . . . . . . . . . . . . . . . . . . . 85

5.5.3 Summary statistic: placement error . . . . . . . . . . . . . . . 86

5.5.4 Simulation testing . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.5 testing on physical platform . . . . . . . . . . . . . . . . . . . 88

6 Robot Button Pressing In Human Environments 99

6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xi



6.3 CHARACTERIZATION OF SWITCHES IN HUMAN ENVIRON-
MENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Button Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.3 Location and Geometry . . . . . . . . . . . . . . . . . . . . . 107

6.3.4 Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.5 Surface material . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.6 Travel distance . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 THE SWITCHIT PLATFORM . . . . . . . . . . . . . . . . . . . . . 109

6.4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.2 Scallop fingertip . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.3 Environmental annotation and calibration . . . . . . . . . . . 112

6.4.4 Button Panel Recognition and Localization . . . . . . . . . . . 114

6.4.5 Button State Recognition . . . . . . . . . . . . . . . . . . . . 115

6.4.6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5.2 Measurement of system accuracy . . . . . . . . . . . . . . . . 118

6.5.3 Test panel experiments . . . . . . . . . . . . . . . . . . . . . . 119

6.5.4 Experiment pressing in an office building and home . . . . . . 121

6.5.5 Test panel experiments . . . . . . . . . . . . . . . . . . . . . . 123

7 Future Work 124

Bibliography 127

xii



List of Figures

1.1 Examples of poor space utilization in shipping boxes. . . . . . . . . . 5

2.1 Example packing placements obtained by HM and DBLF. HM finds
more compact and stable packing compared to DBLF. . . . . . . . . 20

2.2 (a) Grasp poses generated satisfying vacuum graspbility constraints.
(b) Compatible gripper poses with candidate object orientation are
checked for clearance with the container and the object pile. Collision-
free grasps are shown in green and colliding grasps are colored in trans-
parent grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Distribution of the solution containers found under different level of
constraints. The x axis is the 5 container dimensions tested. . . . . . 22

2.4 Examples of packing plans for itemsets of size 10. . . . . . . . . . . . 23

3.1 Feasible solutions for a 2D, 3-item instance of (a) NDOP and (b) QOP.
All 3! = 6 possible arrival orders are collision-free, loadable from top-
down, and yield intermediate piles that are stable under gravity. In
QOP, an item is never moved after it is placed. . . . . . . . . . . . . 28

3.2 Examples of plans that are infeasible for arrival order ABCD: (a) un-
stable, (b) items C and D collide with B along the loading direction,
(c) and the path for the robot manipulator to grasp and load item D is
infeasible. In (d), although ABCD is feasible, the prefix requirement
is violated because the sub-plan ABC is unstable. . . . . . . . . . . . 31

3.3 A plan and its dependency graph. C2 requires D1 to be present to
maintain the stability constraint, because otherwise the imbalanced
weight on B would cause tipping. Similarly, D2 depends on C1, and so
forth for C3 and D3. This CDG is compatible with orders of the form
AB(C1D1)(C2D2)(C3D3) where the (XY ) denotes either XY or Y X. 36

3.4 A set of plans P1, . . . , P4 (top) and their dependency graphs G1, . . . , G4

(bottom). For any ordering beginning with A, there is at least one plan
(P1 or P2) compatible with it. But for any ordering beginning with
BDA, CB, CD, DAC, or DC, no plans are compatible. . . . . . . . . . 38

xiii



3.5 An example showing that QOP (Alg 8) is not necessarily complete even
with a complete offline planner. (a) The first recursive call produces
a feasible plan with A placed first. (b) Once item A is placed in the
planned location, the plan is infeasible for order ACB, as shown in (c).
On the other hand, if A was placed as in (d), a feasible QOP solution
could result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 (a) Worst-case behavior of Verify-CDG-Coverage occurs in an instance
with n plans, where n− 1 “books“ are stacked vertically with the n’th
book stacked horizontally on top. Every possible order of k ≤ n items
is compatible with a set of n − k + 1 plans, and a recursion depth of
n is required. (b) With a slightly different stacking, the dependency
graphs are reversed. Only a depth 1 recursion is needed due to the
singleton pruning step, so running time is polynomial. . . . . . . . . 45

3.7 Illustrating the reduction from SAT. Each clause (upper left) is con-
verted into a dependency graph (lower left), and a counterexample
(lower right) ordering corresponds to a SAT solution (upper right). . 46

3.8 The dimensions (in inches) of containers 1–5 used in our experiments,
in order of increasing length + girth. . . . . . . . . . . . . . . . . . . 48

3.9 An NDOP solution for packing 5 items in container 5. . . . . . . . . . 50

3.10 Distribution of the solution container for offline / NDOP container
optimization and various itemset sizes. Most small instances can be
packed in any order, but with more items the variability in order re-
quires larger boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 A failure case for packing 5 items in container 3. The offline planner
solves for the arrival order in (a) but fails on the order in (b) because
there is insufficient remaining space for the fifth item. . . . . . . . . . 51

3.12 A QOP solution for 4 items in container 5. Due to the matching
heuristic, only four plans are needed (one for each item placed last). . 52

4.1 Some successfully reconstructed objects from a 200-item test set, scanned
by a novice user of our system. . . . . . . . . . . . . . . . . . . . . . 55

xiv



4.2 Skin regions identified by skin-pixel based segmentation described in
[VSA03]. This method cannot detect shaded areas of hand as well as
accessories on hand (jewelry, nail polish, etc.). It also falsely includes
object regions with colors close to human hands. . . . . . . . . . . . . 58

4.3 The new sides problem poses a challenge for video segmentation al-
gorithms that rely on coherent object appearance. Tracking a can of
tomato soup with a hierarchical graph-based method [GKHE10] fails
to grow the segmentation to newly appeared top of the can. . . . . . 59

4.4 BackFlow takes user annotation of background or ground truth seg-
ment on the first frame and propagates labels as follows. 1) Initialize
background labels (superpixels) from user input. 2) Propagate back-
ground labels from frame t to frame t+1 through optical flow. 3)
Perform graph-based foreground derivation. 4) Remove background
labels in segmented foreground and grow background labels to neigh-
bourhood superpixels. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Background labels (marked as red dots) grow gradually into the previ-
ously unseen palm while maintaining separation from the foreground
object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 RGB-D in-hand object manipulation dataset contains RGB-D video
of 13 non-duplicate items from YCB food category, including Pringles,
mustard, Cheez-It, sugar, Spam, tomato soup, banana, pear, plum,
strawberry, orange, lemon and Jell-O. . . . . . . . . . . . . . . . . . . 66

4.7 Per sequence accuracy (IoU) comparison of BackFlow to other state-
of-the-art video segmentation methods. . . . . . . . . . . . . . . . . 67

4.8 Reconstructed models from BackFlow segmentation results. . . . . . . 68

4.9 Comparison of reconstructions from OSVOS and BackFlow. . . . . . 69

5.1 The experimental packing setup consists of a UR5 robot equipped with
E-pick suction gripper, and overhead cameras (not pictured). Errors
from pose recognition, camera-robot calibration, box location calibra-
tion, grasp planning, the center of mass estimation, and geometric
modeling affect the overall success rate of packing. . . . . . . . . . . 91

xv



5.2 Top-down diagram of the packing experiment. Objects to be packed
are arranged in the picking area, and must be packed in the container
(e.g., a shipping box). Overhead cameras (Realsense SR300 and En-
senso N35) provide color and depth information. . . . . . . . . . . . . 92

5.3 A diagram of how error sources (rectangles) contribute to unexpected
events (rounded rectangles) and ultimately to packing failure. We use
εplace as a measure for grasp pose error. . . . . . . . . . . . . . . . . . 93

5.4 Closing the loop around vision leads to more robust packing. (a) Of-
fline plan. The 2 cracker boxes are stacked first, followed by bleach
and 2 soup cans. (b) The second cracker box is shifted during pack-
ing, blocking the access for bleach. Open-loop packing would lead to
a failure. (c) The closed-loop strategy captures a heightmap of the
placed pile, detects a violation for the bleach placement, and plans a
new location. (4) Bleach is placed successfully in the empty location. 94

5.5 Conservative geometry margins reduce inadvertent collisions. (a) A
non-conservative plan (left) causes a failure during the execution of
the plan (right). Specifically, the shifted cracker box caused a failure
and crash of the sugar item planned on top of it. (b) A conservative
plan with δ =1 cm margin. During execution, all items are placed
within the container without causing an inadvertent collision. . . . . 95

5.6 15 items from YCB video object dataset are used in the packing ex-
periment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Simulation packing success rates for 10-item orders. Pose error scaling
factor is given on the horizontal axis, and the success rate is given on
the vertical axis. The baseline (V1) success rate drops off dramatically
as pose error increases, while the robust technique (V4) is much less
sensitive to error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xvi



5.8 Example of failed packing executions, for each experimental condition.
In the baseline (V1), all items are planned tightly, and the cracker box
hit a container wall, causing it to tilt, and for all subsequent items
planned on top of it to smash. In robust planning (V2), although
margins were enforced in planning, a substantially incorrect pose es-
timation caused the bleach item to stick out of the container, and no
action is taken to correct it. In closed-loop packing (V3), the first-
placed cracker box caught on the side and failed to be pushed in. This
was the only case when the push maneuver did not work in our ex-
amples. Although this caused a failed plan, replanning prevented the
subsequent items from smashing onto the cracker box. With both
closed-loop packing and robust planning (V4), a replan was triggered
after the cracker box and before the bleach item. Because the pile was
treated as a fixed, rigid object, the bleach was placed on top of the
cracker box, but since it was unstable, this caused it to tip over. . . . 98

6.1 SwitchIt is a spherical robot equipped with an RGB-D camera. Button
panels are annotated using a QR code sticker affixed during a manual
setup phase. Shown here mounted on a tripod, the robot is preparing
to press buttons on an electronic passcode panel. . . . . . . . . . . . 101

6.2 Buttons characterized by type. . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Cylindrical and scallop tip designs: (a) Scallop tip skeleton, (b) Scallop
tip with coating, (c) Side view of tips. From top to bottom: scallop
skeleton, cylindrical, scallop coated with rubber, (d) Top view of tips.
From top to bottom: scallop skeleton, cylindrical, scallop coated with
rubber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Steps of the panel calibration process: (a) Taking a picture of the panel
panel with RGB-D camera, (b) Tap on a button to zoom in. Already
calibrated buttons will be marked, (c) Draw rectangles in the area
of interest as guided for each type of buttons, (d) Zoomed in button
details make it easier for operators to calibrate with higher accuracy . 113

6.5 Point cloud and RGB view showing localization of button surface in
real-time. Computed locations of the buttons are drawn as red rect-
angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Calibration areas by button type: (a) Push button, (b) Toggle, (c)
Rocker, (d) Slider, (e) Turn knob, (f) Pull button. . . . . . . . . . . . 115

xvii



6.7 The above apparatus is used for testing the accuracy of the system:
(a) Robot and camera are calibrated using a cross marker, (b) Center
button is located at the intersection of opposing diagonal circles, (c)
Center plate is removed during the test to not interfere with tip motion. 119

6.8 Histogram of system errors. . . . . . . . . . . . . . . . . . . . . . . . 120

6.9 Error distribution in XY. . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.10 A selection of button panels that SwitchIt succeeded in activating:
(a) Door passcode, (b) Disabled door exit, (c) Thermostat buttons,
(d) Switch with dimmer, (e) Office stereo control, (f) Security door
entrance, (g) Electronic keypad, (h) Light switch . . . . . . . . . . . 122

6.11 Four button types that SwitchIt failed to activate: (a) An old-style
timer, (2) An elevator pull button, (3) A washer control button, (4) A
turn knob on oven. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xviii



List of Tables

2.1 Comparing planning techniques on 10-item orders with and without
robot-packable constraints . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Impact of ∆r and candidate number N on the results . . . . . . . . . 24

2.3 Execution success rates in simulation, 10-item orders . . . . . . . . . 25

3.1 NDOP container optimization results . . . . . . . . . . . . . . . . . . 49

3.2 QOP planning results in container 5 . . . . . . . . . . . . . . . . . . . 51

4.1 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Hausdorff Distance measurements w.r.t. bounding box size of the re-
constructed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Summary of empirically evaluated error sources . . . . . . . . . . . . 87

5.2 Success rates on the physical packing platform, 5-item orders . . . . 89

6.1 Breakdown of button characteristics by type . . . . . . . . . . . . . . 108

6.2 Test Panel Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 121

xix



Chapter 1

Introduction

The two main factors that motivate warehouse automation are 1). to reduce the sheer size

of a warehouse facility and to speed up transportation of goods within them, and 2). to

automate labor-intensive and repetitive operations.

Large areas are needed for warehouses to store the item assortment in racks, to move

stock, to unload and load trailers and containers, and to allow people to pick from them.

Meanwhile, it becomes time-consuming to move items and people around inside such a

large space. By earlier 2000s, a big boost of warehouse technology in address this problem

is credited to AVS/R (autonomous vehicle-based or shuttle-based storage and retrieval)

systems. Theses systems use racks with aisles and deploy autonomous shuttles that operate

to transport inventory around. Another important development to address this problem is

the use of automated pallet stacking and destacking technologies.

Later in the 2000s, with advanced in sensor technologies and robotics, mobile robots

such as automated guided vehicles(AGVs) and autonomous mobile robots (AMRs) are

employed to move inventory shelves around in the warehouse and present inventory for

the operator to retrieve. The inventory could include storage racks, packages, or a tote of

items. Mobilized storage racks can be stored to a higher density as there is no need to leave

room for aisle for a human to walk by. The fact that the robot brings the inventories to

the operator instead of having the operator walk to them also increases the base pick rate.

Compared to the earlier warehouse automation technologies that rely on mazes of conveyor

belts and chutes, robotic automation allows for faster deployment and greater mobility.

The last ten years have seen a fast expansion of the E-commerce market. Many ware-

houses move to operate 24/7, handle large and variable daily order volumes, and store

millions of unique items. The movements raise the demand for more comprehensive and

sophisticated robotic automation. The hope is to fulfill a customer order fully automati-
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cally, from sorting inbound inventory to pick and pack for each individual ordered item.

Those processes are great candidates for automation: they are laborious and repetitive in

nature, and often suffers from poor ergonomics. In fact, interest in robust and versatile

robotic manipulation for a wide range of objects is almost as old as robotics. However,

most automated robot success is restricted to known objects, in controlled configurations,

with specialized hardware. The variety of the objects, varied widely in size and appear-

ance, ranging from loose objects wrap ed in plastic such and clothing, to soft objects like

plush toys, as well as solid but highly concave objects like bowls and cups, present major

challenges for robot vision and manipulation.

How robots can grasp and handle a wide range of objects robustly has long-term research

focus of the robotic community. Of which the grasping is probably the most studied aspects.

Grasping methods can be roughly categorized into model-based grasping and data-driven

grasping. Model-based grasping selects a grasp primitive based on the geometry of the

object, using criteria such as force closure [Ngu88] or caging [RMF12]. Data-driven methods

sample grasp candidates for an object and rank the candidates according to a scoring metric.

The metrics come from existing grasp experiences that can be a heuristic or an evaluation

of the grasp generated in a simulation or on a real robot [BMAK14]. Progress over the past

decade in machine learning, perception, and hardware design has enabled robots to grasp

an expanding set of objects and to do so more robustly. While different research groups use

the grasping dataset of various difficulty and evaluation metrics, one of the most state-of-

the-art systems is arguably the Google grasping project [LPKQ16], which allows industrial

robot arms to grasp novel objects in a cluttered container. A large convolutional neural

network was trained, whose input is an image of the current scene, to predict the probability

of grasping motions to result in successful grasps. Empirically it shows that the robot has

an 80% success rate among 100 grasping attempts.

The Amazon Robotics Challenge (ARC) [Rut15] held yearly from 2015-2017 has drawn

wide attention from the robotics community. The competition expands the research hori-

zon from just grasping to purposely pick and place, and highlights the importance of the
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completory of a picking action: What comes after picking? How can objects be placed or

stowed for different purposes of operation? Specifically, the rule of the competitions tests

the ability of robotic systems to fulfill an order by autonomously picking the ordered items

from a tote and place it in a storage unit, and pick the item from storage and pack it into a

shipping box, which is reasonably good representation of the key challenges in a warehouse.

Many state-of-the-art pick-and-place systems such as [YFD+16, SLMG+18, ZSY+18] have

resulted from the competition. Those systems are capable of recognizing and grasping both

known and novel objects to a degree in relatively cluttered environments and place them

in over-sized storage space.

Following ARC, robot packing has attracted greater research interest. Robot packing

studies the placing aspects of the manipulation, under a more rigorous problem definition

of dense object packing. While APC has laid out some foundations for building a pick

and place system, the placing aspects in such systems are largely simplified by using over-

sized containers. Under this setting, packing can be addressed with simple heuristics or

even dropping items from the top center. Simple heuristic methods are insufficient for

addressing a dense object packing problem, during which robots stow objects into confined

spaces to high density, such as shipping boxes, totes, or shelves.

To date, most of the dense packing has been studied as inserting a single object into a

cluttered environment using high-resolution sensors. For example, Yu et al. [YR18] propose

an insertion strategy that leverages tactile sensing to probe the gap for the designated

insertion pose while monitoring incipient slip to maintain a stable grasp on the object, while

estimating and correcting for residual position uncertainties. Shome et al. uses RGB-D data

and a vacuum-based end-effector as a grasper and push finger. They monitoring of potential

failures in real-time and uses corrective pushing to achieve tight packing of an object to

its designed spot. Inserting an object into a tight space has its roots in the classic peg-in-

hole problem, which a typical contact manipulation task that requires precise position and

some form of compliance, either passive or active. Many approaches have been proposed

to solve the problem. One class of methods is based on passive compliance hardware and
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control algorithms. Drake [Dra05] designed a passive compliance device called Remote

Center Compliance (RCC) for correcting small uncertainties in the assembly task. Park et

al. [HJJ+13] proposed a strategy that adopted hybrid force/position control and passive

compliance control for successful peg-in-hole assembly. Another class of methods is model-

based active sensing, which utilizes feedback from sensors to identify the configurations

or errors in the assembly process. The model-based methods are usually more adaptable

to new environments. An example includes Bruyninckx et al. [BDD95], who proposed

a model-based method to model different contact situations and deployed the model and

feedback from a force sensor to explicitly find the hole and align the axes of the peg with

the hole. Yu’s work also belongs to this class of method.

This dissertation studies dense packing, with a focus on a specific problem: pack-objects

of arbitrary shapes and weights into a single shipping box. This problem poses additional

challenges on top of the dense packing problem discussed (which is only concerned with

inserting an object into its designated spot). The additional challenge is to optimize a

placement plan and a container for a given set of objects, so that all objects in the set are

guaranteed to fit within the container when the packing is performed by a robot.

The current state of practice in fulfillment centers leaves the responsibility of container

selection and packing to human worker intuition. Due to demanding schedules, workers

cannot employ much foresight in the packing process and are reluctant to re-pack. As a

result, over-sized containers are often used, incurring waste and high shipping costs1.1.

Better containers and packing plans could be chosen using automated algorithms, whether

packing is accomplished by humans or robots.

Traditionally, problems that involve the placement of objects within a container or a

set of containers are referred to as cutting and packing problems. Most existing packing

algorithms apply to idealized scenarios, such as rectilinear objects and floating objects not

subject to the force of gravity. Popular variations of the cutting and packing problem

include the bin and strip packing problem, the knapsack problem, the container loading

problem, and others. Under specific settings, such problems can be formulated and solved

4



optimally using the exact algorithms. One example of these state-of-the-art exact algo-

rithms is the solution to the 3D bin packing problem using branch and bound, proposed

by Martello et al. [MV98, MPV00], whose work is further extended by many including

Boef et al. [dBKM+05] and Crainic et al. [CPT08]. Heuristic methods and metaheuris-

tic approaches have also been developed over the years, such as the popular Bottom-Left

heuristic [BCR80] and the Best-Fit-Decreasing heuristic [JDU+74].

More recent work has addressed irregular shape packing, and only heuristic methods

are practical because the search space is infinite. Metaheuristics are commonly used in

this setting such as Simulated Annealing (SA) [kam88, ZH04, LLCY15] and Guided Local

Search (GLS) [FPZ03, Ege09, VT03, VVHS15, BLP13] that start with an initial placement

and iteratively improve the placement by moving the pieces in the neighborhood while

minimizing an objective function (e.g., overlap in the system). Other work has also pro-

posed constructive positioning heuristics for 3D irregular objects, such as Deepest-Bottom-

Left-Fill (DBLF), which places items in the deepest, bottom-most, left-most position; and

Maximum Touching Area (MTA), which places an item in a position that maximizes the

total contact area of its faces with the faces of other items [WGC+10].

To perform automatic packing in warehouses using a pre-computed packing plan, sev-

eral real-world issues need to be addressed, such as stability under force of gravity, and

kinematics and clearance issues for the robot. If stability is not considered, the pile may

shift during execution, and therefore subsequent placements are unlikely to be executed as

Figure 1.1: Examples of poor space utilization in shipping boxes.
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planned. If kinematics and clearance are not considered, the robot may be asked to perform

infeasible motions (e.g., grip an item from underneath, bring an item to a target through

another interlocked item, or pass through the container wall). Unstable placements and

infeasible robot motions may result in failure to contain all items, and even cause damages

to the robot and items. A failed packing is usually difficult and time-consuming to recover

from, e.g., remove all placed items in the old box and replace them in a larger box.

Some research has taken aspects of stability into consideration during packing. Egeblad

et al., for example, use a two-stage GLS packing algorithm that, in the first stage, optimizes

for the center of gravity and inertia of the pile and, in the second stage, minimizes overlap in

the system [Ege09]; Liu et al. propose a constructive method that packs irregular 3D shapes

using a Minimum-Total-Potential-Energy heuristic [LLCY15]. This method performs a

grid search for the lowest gravitational center height Z for each placement. However, both

proposed methods use heuristics only and do not verify the stability of each placement. In

contrast from these works, our method enforces stability explicitly using constraints.

We also know of one packing work that takes into account robot manipulation feasibil-

ity [dBKM+05], in which the author proposes a variant of the orthogonal 3D box packing

scheme such that no prior packed box is in front of, to the right of, or above the current

placing box, to avoid possible collision with a vacuum gripper. This placing rule, however,

cannot guarantee collision-free placements with other gripper geometries and neglects robot

kinematic constraints and graspability constraints.

We are the first to propose a comprehensive set of constraints tailored to the automated

warehousing domain and implement a packing algorithm to solve those constraints. The

algorithm guarantees the stability of the object pile during packing and the feasibility of the

robot motion executing the placement plans. Our formulation for the constraints are simple,

but yields surprisingly effective results. Experimental evaluation of the method is conducted

with a realistic physical simulator on a dataset of scanned real-world items, demonstrating

stable and high-quality packing plans compared with other 3D packing methods. Moreover,

a prototype robot hardware and software system that executes the algorithm achieves a
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98% success rate with robustness measures. We hope that by highlighting the importance

of robot-feasible offline planning and error-correcting measures, the ideas introduced in this

thesis can inform key design decisions for future robot warehouse automation technologies.

Our contributions are as follows:

1. A set of constraints robot-packable constraints are formulated, and a constructive

packing pipeline is proposed to solve these constraints. The pipeline is able to pack

geometrically complex, non-convex objects while satisfying stability and robot pack-

ability constraints. Experimental evaluation of the algorithm conducted with a re-

alistic physical simulator demonstrates stable and high-quality packing plans com-

pared with other 3D packing methods. This work appeared previously as Wang et

al. [WH19b], published in ICRA 2019 with co-author Kris Hauser. This work is

presented in Chapter 2.

2. Most existing packing algorithms, including our ICRA 2019 work, assumes a con-

trollable packing sequence. However, in many cases, a controllable arrival sequence

may not be practical in a warehouse setting. Therefore, building on op of the ICRA

2019 work, we formulate two variants of packing problems in which the set of items

is known, but the arrival order is unknown. The goal is to certify that the items can

be packed in a given container, and/or to optimize the size or cost of a container so

that that the items are guaranteed to be packable, regardless of arrival order. This

work appeared previously as Wang et al. [WH19c], published in RSS 2019 as best

paper award nominee with co-author Kris Hauser. This work is presented in Chapter

3.

3. Since the proposed algorithm assumes known 3D models of objects for planning

and collision detection. We propose a technique for convenient 3D object model

acquisition. In which an object reoriented in front of a video camera with multiple

grasps and regrasps. Experiments show that our method results in high quality

reconstructed models. Moreover, testing with a novice user on a set of 200 objects
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demonstrates relatively rapid construction of complete 3D object models. This work

appeared previously as Wang et al. [WH19a], published in ICRA 2019 with co-author

Kris Hauser. This work is presented in Chapter 4.

4. Finally, We evaluate the proposed planner under real-world uncertainties such as

vision, grasping, and modeling errors. We build hardware and software testbed that

is fairly representative of current state-of-the-art sensing, perception, and planning

for warehouse manipulation. A systematic evaluation of the testbed is then performed

to study the sources of error and models their magnitude. Exhaustive experiments

are conducted in Monte Carlo simulation and on the physical testbed to examine

the feasibility of the packing placements under open-loop baseline conditions as well

as two strategies for improving the robustness of robotic packing. Empirical results

demonstrate a success rate of up to 98% can be achieved on a physical robot when

using robustness measures despite cascading real-world uncertainties. This work is

presented in Chapter 5.

In Chapter 6, we present our design of a robot named SwitchIt that is small, relatively

inexpensive, easily mounted on a mobile robot, and actuates buttons reliably. While this

is not directly related to robot bin packing, it has many interesting insights on designing

an integrated robot system. This work appeared previously as Wang et al. [?], published

in ICRA 2018 with co-author Kris Hauser.

Finally, we conclude by summarizing our contributions and discussing open challenges

for future work in Chapter 7.
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Chapter 2

Offline Bin Packing under Stable and
Robot-feasible Constraints

This chapter proposes a formulation of the offline packing problem that is tailored to the

automated warehousing domain. Besides minimizing waste space inside a container, the

problem requires stability of the object pile during packing and the feasibility of the robot

motion executing the placement plans. To address this problem, a set of constraints are

formulated, and a constructive packing pipeline is proposed to solve for these constraints.

The pipeline is able to pack geometrically complex, non-convex objects while satisfying

stability and robot packability constraints. In particular, a new 3D positioning heuristic

called Heightmap-Minimization heuristic is proposed, and heightmaps are used to speed up

the search. Experimental evaluation of the method is conducted with a realistic physical

simulator on a dataset of scanned real-world items, demonstrating stable and high-quality

packing plans compared with other 3D packing methods.1

1This chapter is reproduced from Fan Wang and Kris Hauser, “Stable Bin Packing of Non-convex

3D Objects with a Robot Manipulator,” in 2019 International Conference on Robotics and Au-

tomation (ICRA), Montreal, QC, Canada, 2019, pp. 8698-8704. This work is funded by Amazon

Research Award.
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2.1 Introduction

Problems that involve the placement of objects within a container or a set of containers are

generally referred to as cutting and packing problems. Most existing packing algorithms

apply to idealized scenarios, such as rectilinear objects and floating objects not subject to

the force of gravity. To perform automatic packing in warehouses using a pre-computed

packing plan, several real-world issues need to be addressed, such as stability under force

of gravity, and kinematics and clearance issues for the robot.

For a packing plan to be feasible with a robot manipulator, a comprehensive set of

constraints need to be formulated.

In addition to the two standard packing constraints:

1. Noninterference. Each object is collision free,

2. Containment. All objects are placed within the internal space of the container,

we introduce the following constraints necessary for a robot-packable plan:

3. Stability. Each object is stable against previously packed objects and the bin itself,

and

4. Manipulation feasibility. A feasible robot motion exists to load the object into the

target placement. The robot must obey kinematic constraints, grasp constraints, and

collision constraints during this motion.

In the following sections, we refer to constraints 1 and 2 as the non-overlap constraints,

and constraints 1-4 as all constraints, or the robot-packable constraints.

While the application of robot-packable constraints is independent of the particular

packing problem addressed, this chapter focuses on the problem of offline packing of 3D

irregular shapes into a single container. To solve this problem under robot-packable con-

straints, we present the following main contributions:
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1. A polynomial time constructive algorithm to implement a resolution-complete search

amongst feasible object placements, under robot-packable constraints.

2. A 3D positioning heuristic named Heightmap-Minimization (HM) that minimizes the

volume increase of the object pile from the loading direction.

3. A fast prioritized search scheme that first searches for robot-packable placement in a

three-dimensional space that likely contains a solution, and falls back to search in a

five-dimensional space.

Our algorithm and others in comparison are tested in a realistic physics simulator,

by packing large quantities of itemsets using highly complex, real-world object scannings.

With item sizes of 3-5 objects (e.g., a common Amazon order size), the success rate is 99.9%

for finding and executing packing plans using small Amazon order boxes. Large number

of items are also packed in stress tests, in these tests, 80% of the placement plans were

successfully executed in the physics simulator, which is significantly better than the 17%

success rate from a standard packing solver under the same testing condition. Empirical

results also show that the new Heightmap-Minimization heuristic finds more placements

than existing heuristics.

2.2 Problem Defination

We address the problem of offline packing of 3D irregular shapes into a single container

while ensuring the stability of each packed item and feasibility of the placement with a

robot gripper.

Specifically, for a set N geometries G1, . . . ,GN where Gi ⊂ R3, sitting at intial poses

P〉\t = (Pint1, . . . , PintN).let C donate the free space volume of the container and ∂C as

the boundary of the free space. Let Ti · Gi denote the space occupied by item i when the

geometry at pose by Pi. The problem is to find a placement sequence S = (s1, . . . , sN ) of{
1, . . . , N

}
and poses P = (P1, . . . , PN ) such that each placement satisfies robot-packable
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constraint with geometries placed prior:

(Ti · Gi) ∩ (Pj · Gj) = ∅, ∀i, j ∈
{

1, . . . , N
}
, i 6= j (2.1)

Ti · Gi ⊆ C, ∀i ∈
{

1, . . . , N
}

(2.2)

and for each k = 1, . . . , N , stability constraints:

isStable
(
Psk · Gsk , C, Ts1 · Gs1 , . . . , Psk−1

· Gsk−1

)
(2.3)

and manipulation feasibility constraints:

isManipFeasible
(
Psk ·Gsk , Ps1 · Gs1 , . . . , Psk−1

· Gsk−1

)
(2.4)

It is important to note that both stability and manipulation feasibility constraints must be

satisfied for every intermediate arrangement of objects, not just the final arrangement.

2.2.1 Stability checking

Stability is defined as the condition in which all placed items are in static equilibrium

under gravity and frictional contact forces. We model the stack using point contacts with

a Coulomb friction model with a known coefficient of static friction. Let the set of contact

points be denoted as c1, . . . , cK , which have normals n1, . . . , nN , and friction coefficients

µ1, . . . , µK . For each contact ck, let the two bodies in contact be denoted Ak and Bk. Let

f1, . . . , fK denote the contact forces, with the convention that fk is applied to Bk and the

negative is applied to Ak. We also define mi as the mass of object i, and cmi as its COM.

We take the convention that the container has infinite mass.

The object pile is in static equilibrium if there are a set of forces that satisfy the following

conditions.

Force balance: ∀i = 1, . . . , N ,

−
∑

k | i=Ak

fk +
∑

k | i=Bk

fk +mig = 0. (2.5)
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Torque balance: ∀i = 1, . . . , N ,

−
∑

k | i=Ak

(cmi − ck)× fk +
∑

k | i=Bk

−(cmi − ck)× fk = 0.

Force validity: ∀k = 1, . . . ,K,

fk · nk > 0, (2.6)

‖f⊥k ‖ ≤ µk(fk · nk). (2.7)

where f⊥k = fk − nk(fk · nk) is the tangential component (i.e., frictional force) of fk.

For a given arrangement of objects, an approximate set of contact points is obtained

with the slightly scaled geometries in placement. A pyramidal approximation for the friction

cone is used, and the conditions above are formulated as a linear programming problem

over f1, . . . , fN , solved using the convex programming solver CVXPY [DB16]. If no such

forces can be found, the arrangement is considered unstable.

2.2.2 Manipulation feasibility

This constraint checks feasibility of a packing pose when executed by a robot manipulator.

This requires that the object be graspable from its initial pose and can be packed in the

desired pose via a continuous motion, without colliding with environmental obstacles.

In our system, we limit ourselves to the existence of a feasible top-down placement

trajectory within the grasp constraints, as robots performing pick and place (e.g., box

packing) commonly use vertical motion [dBKM+05]. We also assume the existence of

a grasp generator that produces some number of candidate end effector(EE) transforms,

specified relative to an object’s geometry that may be used to grasp the object. The

pseudo-code for this procedure is given in Alg. 1.

2.3 Pipeline for Robot-packable Planning

We develop a constructive packing pipeline to solve for the set of robot-packable constraints

proposed. Our algorithm accepts an itemset, a container dimension, a constructive posi-
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Algorithm 1: isManipFeasible

input : Desired placed geometry T · G and a set of grasp candidates

{T G1 , . . . T Gn }

1 for T G ∈ {T G1 , . . . T Gn } do

2 Compute top-down EE path Pee interpolating from an elevated pose to a

final pose T · T G;

3 for Pee ∈ Pee do

4 if ¬(IKSolvable (Pee) ∧ inJointLimits(Pee) ∧ collisionFree(Pee)) then

Continue with Line1;

5 end

6 return True

7 end

8 return False

tioning heuristic, and/or a packing sequence, to produce packing plans. The pipeline packs

each item to its optimized feasible pose in sequential order, without backtracking.

Our pipeline primarily consists of 4 components, namely:

1. Placement sequence

2. Generate ranked transforms

3. Stability check

4. Manipulation feasibility check

The pipeline starts with a sequencing heuristic to sort all items in a tentative placement

ordering and allocates them individually into the container in this sequence. For each

object at the time of the allocation, a set of candidate transforms satisfying robot-packable

constraints are generated and ranked based on the positioning heuristic. Constraint checks

are performed in order until a transform satisfying all required constraints is returned.

14



2.3.1 Placement sequence

The placement sequence can be user-specified or generated by non-increasing bounding box

volume rule. The generated sequence is subject to adjustment if a solution cannot be found

in the specified ordering.

2.3.2 Generating ranked transforms

For a given item, a positioning heuristic (e.g., placement rule) identifies a free pose inside

the container that is most preferred according to a specific criterion. Our pipeline accepts

arbitrary positioning heuristics, but instead of applying the heuristic to obtain one optimal

placement for each item, we use the score formulated from the positioning heuristic to rank

candidate placements.

The candidate placements are obtained with a prioritized search among a discretized set

of object poses. Instead of searching in the 6D space of SE(3), our algorithm first performs

a grid search in a 3D space that likely contains robot-packable solutions. In the 3D search,

the rolls and pitches of G are restricted to be a set of planar-stable orientations, which are

a set of stable resting orientations of G on a planar surface, computed using the method

of Goldberg et al. [GMZ+99]. This speeds up the search for the common case of packing

on the first layer and on horizontal supports. If no feasible solutions exist in the 3D space,

the algorithm falls back to search in 5D, in which a grid search is performed for rolls and

pitches as well.

The 3D search for collision-free placements of one object, given a set of rolls and pitches,

is shown in Alg. 2. A grid search is performed for yaw, X, and Y at a given resolution, and

the height Z of the placement is analytically determined as the lowest free placement. 2D

heightmaps are used to accelerate the computation of Z to an efficient 2D matrix manipu-

lation. Three heightmaps are computed: 1) a top-down heightmap Hc of the container and

placed objects, 2) a top-down heightmap Ht of the object to be placed, and 3) a bottom-up

heightmap Hb of the object to be placed. Ht and Hb are measured relative to the lower

left corner of the orientated object. Raycasting is used to build these heightmaps, and rays
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that do not intersect with the object geometry are given height 0 in Ht and ∞ in Hb. The

container heightmap is obtained once at the beginning of object placement search, and an

object heightmap is computed once for each distinct searched orientation.

Given an object orientation and X, Y location, we calculate the lowest collision-free Z

as follows:

Z =
w−1
max
i=0

h−1
max
j=0

(Hc[x+ i, y + j]−Hb[i, j]) (2.8)

where (x, y) are the pixel coordinates of X,Y , and (w, h) to be the dimensions of Ht.

Algorithm 2: 3DGridSearch

input : Geometry G, container C, rolls and pitches O

output: All collision-free candidate transforms

1 for (φ, ψ) ∈ O do

2 for θ ∈ {0,∆r, 2∆r, . . . , 2π −∆r} do

3 Let R← Rz(θ)Ry(φ)Rx(ψ);

4 Discretize legal horizontal translations of R · G into grid{
(X1, Y1), . . . (Xn, Yn)

}
;

5 for (X, Y ) in
{

(X1, Y1), . . . (Xn, Yn)
}

do

6 Find the lowest collision free placement Z at translation X, Y ;

7 T ← (R, (X, Y, Z));

8 if T · G lies within C then Add T to T ;

9 end

10 end

11 end

12 return T

Once all collision-free candidate transforms are obtained, they are scored by a scoring

function formulated from a positioning heuristic. For example, the Deepest-Bottom-Left-
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First heuristic can be formulated as the score:

Z + c · (X + Y ) (2.9)

where c is a small constant.

The candidates are then ranked by score (lower is better). If only robot-packable

constraints are required, the placement candidate with the lowest score is returned. If

additional constraints are specified, the ranked candidates will be checked for the additional

constraints until a candidate satisfying all constraints is returned.

After a new object has been placed, we update the heightmap of the container Hc. This

subroutine is also used in our heightmap minimization heuristic. Given a pose X,Y, Z of

the object to be packed, and the top heightmap Ht at the given orientation, we calculate

an updated heightmap H ′c adding the placed object as follows:

For all i = 0, . . . , w − 1, j = 0, . . . , h− 1, we let:

H ′c[x+ i, y + j] = max(Ht[i, j] + Z,Hc[x+ i, y + j]) (2.10)

if Ht[i, j] 6= 0, and otherwise

H ′c[x+ i, y + j] = Hc[x+ i, y + j]. (2.11)

2.3.3 Pipeline summary and fall back procedures

A packing attempt for a single item is summarized in Alg. 3, and the overall pipeline for

packing multiple objects is given in Alg. 4. Given a heuristic packing sequence, it calls

Alg. 3 for each item with the set of planar-stable rolls and pitches. This first stage finds

placements for most objects in typical cases. For the remaining unpacked items U , the

algorithm activates the fallback procedure. The fallback procedure examines each unpacked

item and attempts to perturb the planar stable orientations by iterating over rolls and

pitches until a solution is found, and if no solution is found the algorithm terminates with

failure.

17



Algorithm 3: packOneItem

input : item geometry G, container C, pitches and yaws O, sequence of the

packed items {s1, . . . , si}, transforms of the packed items

{P1, . . . , Pi}

output: Transform T or None

1 T ← 3DGridSearch(G, C, O);

2 Score each T in T based on heuristic used;

3 for up to N lowest values of T in T do

4 if ¬ isStable(T · G, C, P1 · Gs1 , . . . , Pi · Gsi) then continue;

5 Compute grasp poses T G1 , . . . T
G
n compatible with T ;

6 if isManipFeasible(T · G, {T G1 , . . . T Gn }) then return T ;

7 end

8 return None

2.4 Heightmap-Minimization Heuristic

The performance and solution quality of a multi-dimensional packing problem is highly sus-

ceptible to the item-positioning rule [LMV04]. However, existing positioning heuristics for

3D packing are scarce and are commonly adapted directly from 2D packing, and therefore

result in poor space utilization in the 3D container [LMV02, CPT08]. To address these

shortcomings, we propose a novel positioning heuristic called the Heightmap-Minimization

(HM) heuristic, which favors item placements that result in the smallest occupied volume

in the container, as observed from the loading direction.

Specifically, HM scores a placement as follows. Given the candidate transform T =

(roll, pitch, yaw,X, Y, Z), compute a tentative container heightmap H ′c using the update

routine described in Sec. 12. Suppose its shape is (w, h). The score for the placement using

the HM heuristic is:

c · (X + Y ) +

w−1∑
i=0

h−1∑
j=0

H ′c[i, j] (2.12)
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Algorithm 4: Robot-feasible packing with fall back procedures

input : Item geometries G1, . . . ,GN , container C, initial packing sequence

{s01, . . . , s0N}

output: Transforms T and sequence S, or None

1 Initialize T , S, U,O to empty lists;

2 for Gi ∈ {G1, . . . ,GN} do

3 Get planar-stable rolls and pitches for Gi with the top n highest

quasi-static probabilities Oi = {(φ1, ψ1), . . . , (φn, ψn)};

4 Add Oi to O;

5 end

6 for (s0i ∈ {s01, . . . , s0N} do

7 T = packOneItem(Gs0i , C, Os0i , S, T );

8 if T then Add T to T , Add s0i to S;

9 else Add s0i to U ;

10 end

11 for ui ∈ U do

12 Let {(φ1, ψ1), . . . , (φn, ψn)} be the planar-stable orientations in Oui ;

13 for tr ∈ {0,∆r, 2∆r, . . . , 2π −∆r} do

14 for tp ∈ {0,∆r, 2∆r, . . . , 2π −∆r} do

15 Ot = {(φ1 + tr, ψ1 + tp), . . . , (φn + tr, ψn + tp)};

16 T = packOneItem(Gui , C, Ot, S, T );

17 if T then

18 Add T to T ; Add ui to S;

19 continue with Line 11

20 end

21 end

22 return None

23 end

24 return (T , S)
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Figure 2.1: Example packing placements obtained by HM and DBLF. HM finds

more compact and stable packing compared to DBLF.

where c is a small constant.

HM favors positions and orientations that result in good space utilization as it minimizes

wasted space and holes that cannot be filled. HM also favors stable placements since the

bottom of the object is encouraged to match the shape of the supporting terrain (Fig. 2.1).

2.5 Experiment

We tested our algorithm on different item sets and validated plan feasibility in a physics

simulator. Objects were drawn at random from a set of 94 real-world object meshes from the

YCB [CSB+17] and the APC 2015 object set [Rut15]. On average each mesh contains 10,243

vertices. Experiments are conducted on Amazon Web Services instance type m5.12xlarge.

All computation times are measured on a single thread. Parameters used in the experiment

are: heuristic constant c = 1; heightmap resolution 0.002m; step size in both X and Y 0.01m;

∆r = pi/4 in range [0, π); friction coefficient µ = 0.7. Contact points are obtained using

the exact geometry with a scale factor of 1.03. The top 4 planar-stable rolls and pitches

with the highest quasi-static probabilities are used, and candidate number N = 100.
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Figure 2.2: (a) Grasp poses generated satisfying vacuum graspbility constraints. (b)

Compatible gripper poses with candidate object orientation are checked for clearance

with the container and the object pile. Collision-free grasps are shown in green and

colliding grasps are colored in transparent grey.

2.5.1 Robot manipulation feasibility with a vacuum gripper

The robot model used to verify robot feasibility constraints is a Staubli TX90 robot,

equipped with a cylindrical vacuum gripper of 30 cm length and 2 cm diameter. The graspa-

bility constraints ask the vacuum gripper to grasp within a radius r = 2 cm in the horizontal

plane to the object’s center of mass when the object is sitting in flat orientations. The areas

under the gripper should be solid planar areas (80% of the surface points directly below

the tool are within 0.3mm to the estimated plane) for the vacuum opening to grasp normal

to the surface, the resulting gripper axis needs to be within a tilting angle θ = π/4 to the

Z-axis.
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Figure 2.3: Distribution of the solution containers found under different level of

constraints. The x axis is the 5 container dimensions tested.

2.5.2 Small Order Packing

Simulating problem settings in a typical warehouse, we performed a small order packing

test. Per communication with personnel at Amazon, 3-5 items are a standard order size.

We generated 1000 random itemsets consisting of 3-5 models. The itemsets are verified

with various testing methods to fit in at least one of the five containers used in the Amazon

Robotics Challenge 2017 [ARC] under robot-packable constraints, and the smallest feasible

container for each itemset is recorded.

We test our pipeline with HM heuristic and all constraints. Our algorithm seeks a

feasible solution using the smallest container first, and if fails, the process is repeated on

the second smallest container and so on until either a solution is found or all available

containers are exhausted.

The success rate is 99.9% averaging 9.54 s per order. The only failure occurs when a

large object needs to be tilted sideways to fit within a tight space, and no feasible vacuum

grasp exists in the specified orientation. Fig. 2.3 compares the smallest bin statistics using

all tested methods and ours. It appears that HM packing, despite adding all constraints,

enlarges the container needed only marginally.
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Figure 2.4: Examples of packing plans for itemsets of size 10.

2.5.3 Comparisons on Large Itemsets

Next, we perform stress tests on itemsets of size 10. A tall container of size 32×32×30 cm

is chosen. 1000 itemsets of size 10 are generated and verified with all tested methods to

have a non-overlap packing within the chosen container. Since the tilted gripper is likely

to collide with the tall container chosen, we assume the gripper can grasp object of any

orientation at the center of object’s top surface, with the gripper axis vertically aligned to

the Z axis.

We compare our HM heuristic against the DBLF and MTA heuristics [WGC+10], as

well as an implementation of a guided local search (GLS) method as described by Egeblad

et al. [Ege09]. The fast intersection area theorem in Egeblad’s paper was not implemented.

Therefore, for the fairness of the comparison, GLS was run with 5 random restarts, and

each restart was terminated after 300 s if a solution could not be obtained. GLS is also

not tested for all constraints, as implementing robot-packable constraints in GLS methods

is very challenging. Table 5.2 reports the percentage of solutions found and the average

computation time.

Empirically, HM finds more solutions than any other method in comparison. With

robot-packable constraint, HM finds 99.9% of all feasible solutions, leading the 2nd place

DBLF heuristic by 1.5%, while MTA and GLS are not as competitive. After adding all

constraints, each technique drops in success rate by a few percents, but HM still leads the

other methods. The mean running time of HM is also 30% shorter, indicating that the
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Table 2.1: Comparing planning techniques on 10-item orders with and without

robot-packable constraints

HM DBLF [WGC+10] MTA [WGC+10] GLS [ENO07]

Success, non-overlap (%) 99.9 98.4 88.9 78.9

Time, non-overlap (s) 15.7 14.2 14.1 502

Success, all constraints (%) 97.1 96.3 86.3 —

Time, all constraints (s) 34.9 50.1 95.4 —

Table 2.2: Impact of ∆r and candidate number N on the results

Rotation granularity ∆r π/4 π/4 π/8

Number of candidates N 100 500 500

Success, all constraints (%) 97.1 97.5 98.7

Time, all constraints (s) 34.9 70.05 89.40

highest ranked placements are more likely to be stable than the other heuristics.

In addition, only 3.2% (320 out of 10,000) of the items are packed with the fallback

procedure, indicating the 3D space searched is indeed highly likely to contain robot-packable

solutions. The fallback procedure is nonetheless important, as, with no fallback procedure,

the success rate with all constraints drops from 97.1% to 72.4%.

With finer rotation granularity ∆r and more candidates to check against robot-packable

constraints, the success rate can be further improved at the cost of increased computation

time (Table 2.2).
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Table 2.3: Execution success rates in simulation, 10-item orders

Success (%) Drop (cm) Horiz. Shift (cm)

Non-overlap constraint 17.11 1.95 1.29

All constraint 79.1 1.36 0.50

2.5.4 Executing Packing Plans in Simulation

Finally, we test the open-loop execution feasibility of packing plans in the Klamp’t robot

physics simulator [kla]. In the simulation, the robot places one item after another using a

top-down loading direction. The plan is considered a success if: 1) All items placed to the

planned transforms without the robot and the objects colliding with items placed prior,

and 2) all items contained within the container when placement is complete.

The robot used in the simulation is the TX90 robot model with the vacuum gripper

described. We make the same assumption for the gripper as in the 10-item packing case.

The robot places all items 1cm elevated from their planned transform; therefore there is an

expected 1 cm drop. We allow 20 s for the items to settle before the next item is placed.

In the 3-5 items case, 100% of plans are executed successfully according to our success

criteria. In the 10 item case, 768 out of 971 (≈80%) of robot-packable plans obtained with

HM heuristic are executed successfully. This is significantly higher than the 17% success

rate with robot-packable constraints. Further shown in Table 2.3, items packed with all

constraints undergo smaller displacements during packing execution, indicating increased

stability.

The 20% failure cases are caused by an object falling out of its desired placement, which

prevents subsequent items from being packed. The stability checker may be too optimistic,

especially for intrinsically unstable objects like balls. Moreover, the impact of dropping an

object could shift supporting objects.
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Chapter 3

Robot Packing with Known Items and
Nondeterministic Arrival Order

Building on top of the offline algorithm introduced in Chapter 2. This chapter formulates

two variants of packing problems in which the set of items is known but the arrival order is

unknown. The goal is to certify that the items can be packed in a given container, and/or to

optimize the size or cost of a container so that that the items are guaranteed to be packable,

regardless of arrival order. The Nondeterministically ordered packing (NDOP) variant asks

to generate a certificate that a packing plan exists for every ordering of items. Quasi-online

packing (QOP) asks to generate a partially-observable packing policy that chooses the item

location as each subsequent item is revealed. Theoretical analysis demonstrates that even

the simple subproblem of verifying feasibility of a packing policy is NP-complete. Despite

this worst-case complexity, practical solvers for both NDOP and QOP are developed, and

experiments demonstrate their application to packing irregular 3D shapes with manipulator

loading constraints.1

1This chapter is reproduced from Fan Wang and Kris Hauser, “Robot Packing with Known Items

and Nondeterministic Arrival Order” in Robotics: Science and Systems(RSS), June 2019. The

journal version of the paper is currently in submission to in submission to IEEE Transactions on

Robotics (T-RO). This work is supported by an Amazon Research Award.
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3.1 Introduction

A large variety of packing problems have been studied, including the bin and strip packing

problem, knapsack problem, container loading problem, nesting problem, and others. In

an offline setting, the items and container(s) are known, and a plan can place the items in

arbitrary order [MPV00]. In an online setting, the items are not known a priori and need to

be placed as they arrive [Sei02]. We consider a robot packing setting which addresses packing

problems with the additional constraints that items must be loaded with a collision-free

robot path, and that intermediate piles of items must be stable against gravity.

This chapter introduces two nondeterministic formulations of robot packing problems

that lie between the offline and online settings. These formulations are practical for au-

tomated warehouses where the ultimate item set (e.g., shopping cart) is known, but some

distinct, uncontrollable component of the packing system controls the item arrival order.

For example, in Amazon’s automated fulfillment centers, shelving units containing individ-

ual items are carried by thousands of mobile robots to several picking stations, and the

order in which shelves arrive at a given station is controlled by a complex algorithm that

is tuned to maximize delivery throughput for shelving units. In cases where item deliveries

are human-controlled, it may be even less practical for an algorithm to dictate the arrival

order. Hence, to guarantee that the items can fit in a given container, a packing planner

should certify the validity of a plan under all possible arrival orders. In the NDOP variant,

the feasibility of the container is verified under all nondeterministic orders, but the arrival

sequence is revealed before packing is executed. In the QOP variant, each object must be

packed before the next item is revealed (Fig. 3.1).

We present a practical framework for solving NDOP and QOP problems that uses

a combination of an offline planner and a packing policy verifier. A packing policy is

represented by a set of possible packing plans, each of which consists of a set of packing

locations and a directed acyclic graph (DAG) of their dependencies. The verifier will verify

or disprove the feasibility of a policy under all permutations of arrival orders. We present

a verification algorithm that uses pruning techniques, and in practice can check feasibility
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Figure 3.1: Feasible solutions for a 2D, 3-item instance of (a) NDOP and (b) QOP.

All 3! = 6 possible arrival orders are collision-free, loadable from top-down, and yield

intermediate piles that are stable under gravity. In QOP, an item is never moved

after it is placed.
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quickly even for a large number of objects and packing plans. However, in some cases

exponential behavior is observed. We prove that the worst-case solution complexity of

NDOP and QOP is O(n!) and even feasibility verification for a polynomial-sized NDOP

policy is NP-complete, via reduction from SAT.

Nevertheless, the solver is practical for small numbers of items, and even using an

incomplete offline planner, it guarantees that a solution, when found, is feasible for all

object orderings. Several packing heuristics are also introduced to improve scalability of

the approach, and experiments demonstrate that our approach can be realistically applied

to irregular 3D shapes with item sets of size up to 10.

3.2 Related work

Packing algorithms have been studied extensively both for their theoretical interest and

practical applications in shipping, manufacturing, and 3D printing. The vast majority

of work considers rectilinear objects. State-of-the-art exact algorithms for the offline 2D

and 3D bin packing problem use branch-and-bound approaches [MV98, MPV00]. Because

exact methods have worst-case exponential complexity, heuristic methods and metaheuristic

approaches have been developed, such as the Bottom-Left [BCR80] and Best-Fit-Decreasing

heuristics [JDU+74]. Heuristics are the only practical methods available for irregular shape

packing (a.k.a. nesting [ENO07]), since the freedom to rotate leads to a continuously

infinite search space. Metaheuristic optimization methods [FPZ03, kam88] simultaneously

optimize the placements of all items, and constructive heuristics incrementally place items

according to some scoring function [LLCY15, WGC+10].

In the offline setting, the item set and packing order can be controlled. Most classi-

cal versions do not formulate interdependence between items (i.e., items appear and then

“float” in their planned locations), which means ordering is irrelevant. This is a reasonable

assumption for some scenarios like sheet metal cutting, but one should consider additional

constraints when packing containers in practice. Prior work has enforced clearance of
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boxes along axis-aligned loading directions in 3D bin-packing by ensuring no previously-

placed item lies along an extruded prism along at least one face of the box [dBKM+05].

Recent work has also formulate collision-checking between the loading mechanism (hu-

man hand, forklift, robot hand, etc.) and already-placed items [WH19b]. Stability con-

straints [Ege09, LLCY15, WH19b] also impose dependency on the packing order. Due to

these dependencies, if the item arrival order does not match the planned order, the plan

might not be successfully executed.

In the online setting, an arbitrary item is presented to the algorithm, which then chooses

a packing location [Sei02]. Neither the item set nor the packing order are controllable, and

often the item geometry can also be arbitrary as well. There are no guarantees that a given

container can be packed, so the typical formulation casts the problem as an optimization of

the number of containers or the container height. Competitive ratios are known for various

online algorithms in the 1D and 2D rectilinear bin packing settings [HCT+11, Sei02], but

to our knowledge, no results are known for irregular shapes. In contrast, NDOP and QOP

seek guaranteed packing in a single container when the item set is known, which is more

appropriate for fulfillment applications. Our NDOP and QOP solvers can handle irregular

shapes, and we prove that when they successfully return a policy, the answer is correct.

3.3 Problem formulation

Let I = {v1, . . . , vn} be a set of n items. Item vi has some geometry Ai ⊂ Rd, and we

wish to pack all items into a container volume C ⊂ Rd. Here d = 2 or 3 is the dimension

of the workspace. The offline packing problem is to compute a feasible packing plan given

A1, . . . , An and C. Such a plan is defined as follows:

Definition 1. A packing plan P consists of an ordering σ1:n = (σ1, . . . , σn) and a tuple of

transforms T1:n = (T1, . . . , Tn), in which σj ∈ {1, . . . , n} specifies that vσj is the j’th item

to be placed, and Ti ∈ SE(d) specifies the target location (pose) of vi.

An ordering must be a permutation on n elements, and is hence an element of the
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Figure 3.2: Examples of plans that are infeasible for arrival order ABCD: (a) un-

stable, (b) items C and D collide with B along the loading direction, (c) and the path

for the robot manipulator to grasp and load item D is infeasible. In (d), although

ABCD is feasible, the prefix requirement is violated because the sub-plan ABC is

unstable.

symmetric group Sn

Definition 2. A packing plan is feasible when it, and all prefix plans, satisfy certain con-

straints, as shown in Fig. 3.2 and defined in the below section.

The prefix feasibility requirement means that for all j < n, the ordering σ1:j with the

corresponding items in locations Tσ1 , . . . , Tσj must also satisfy the feasibility constraints.

For example, we cannot require two blocks to be placed simultaneously on either ends of a

see-saw when stability is violated with only a single block (Fig. 3.2.d).

3.3.1 Constraint formulation

In our formulation, the feasibility of a packing plan requires satisfying the following three

constraints. For readability, for the ordering σ1:n let us denote the sequence number si of
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the i’th item to be the ordinal index in which it appears, i.e., sσj = j and σsi = i.

Non interference All items do not overlap but can touch (3.1) and all items lie entirely

inside the container (3.2):

TiA
◦
i ∩ TjA◦j = ∅ for all i, j with i 6= j, (3.1)

TiAi ⊆ C for all i. (3.2)

Here ·◦ denotes a set’s interior.

Equilibrium To prevent “floating“ items and unbalanced stacks, the equilibrium con-

straint requires that each intermediate packing be stable under gravity and frictional contact

(Fig. 3.2.a). An item is allowed to make contact with the container walls and previously

placed items. We model these as a set of contact points, and require that there exist feasible

forces at each contact point that respect Coulomb friction.

Manipulation feasibility Each item in the packing plan must be loadable by a ma-

nipulator without disturbing previously packed items (Figs. 3.2.b and 3.2.c). We consider

a robot gripper R and a top-down loading direction. In the packing plan, an item is also

given a grasp transform TG, such that the combined geometry of the ith item and the

robot while grasped is Ai ∪ TGR. The swept volume of the item and robot while loading is

SVi = ab ⊕ Ti(Ai ∪ TGR), where a = (0, 0, 0) and b = (0, 0, h), with h some “safe” height

greater than the height of the container. This constraint states that, for all items i, the

swept volume cannot intersect any previously-placed items (3.3) or the container walls ∂C

(3.4):

SV ◦i ∩ TjAj = ∅ for all j s.t. sj < si, (3.3)

SV ◦i ∩ ∂C = ∅. (3.4)
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3.3.2 Nondeterministic problems

Definition 3 (NDOP). The nondeterministically ordered packing problem asks whether

there exists a feasible packing plan for every ordering σ1:n ∈ Sn.

To define QOP, we need to define the concept of a feasible packing policy as follows:

Definition 4. A packing policy is a function π that takes as arguments the identities and

locations of previously packed items (Tσ1 , . . . , Tσj−1) and the next item σj to be packed, and

returns the location Tσj of the next packed item.

Definition 5. A packing plan is generated by a packing policy π and an ordering σ1:n ∈ Sn

via the recursive application of the policy: Tσ1 = π((), σ1), Tσ2 = π((Tσ1), σ2), ..., Tσn =

π((Tσ1 , . . . , Tσn−1), σn).

Definition 6. A packing policy is feasible if for all item orders σ1:n ∈ Sn, the generated

packing plan is feasible.

Since a packing policy is deterministic, we can also write the policy as a function of the

prior order of the objects:

π((σ1, . . . , σj−1), σj) ≡ π((Tσ1 , . . . , Tσj−1), σj). (3.5)

A policy can also be viewed as a tree with depth n and each node has n − ` branches on

level `. This gives a total of
∑n

`=1 n!/`! = O(n · n!) nodes altogether.

Definition 7 (QOP). The quasi-online packing problem asks to compute a feasible packing

policy.

The main difference between NDOP and QOP is that with QOP, the items are revealed

in sequence, and the location chosen for an item is fixed and may not be changed thereafter.

QOP is at least as hard as NDOP, because any solution to QOP is also a solution to NDOP

(but the converse does not hold).
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3.3.3 Container optimization variants

Above we have stated these packing problems in their decision versions. We also consider

container optimization variants, which assume a set of possible containers C and a cost

function cost : C → R, and are stated as follows:

• Offline: Find the container C ∈ C with minimum cost that yields a feasible packing

plan for item set I.

• Nondeterministically-ordered: Find the container C ∈ C with minimum cost that

yields a feasible packing plan for any ordering of item set I.

• Quasi-online: Find the container C ∈ C with minimum cost that yields a feasible

packing policy for item set I.

The container set is typically discrete, such as a set of available boxes, but could also be

continuous, such as a varying height. This formulation can express the classical bin-packing

problem, where C contains a container with 1 bin, a container with 2 bins, and so on, and

cost measures the number of bins.

NDOP and QOP are adapted rather easily into discrete container optimization algo-

rithms by enumerating containers in order of non-decreasing cost until a successful packing

policy is found.

3.4 Method

We make use of an offline robot packing planner [WH19b] with a small amount of modifi-

cation. The responsibility of the offline planner is to generate a feasible packing plan given

the constraints outlined above, while our key contributions are novel methods to invoke the

planner and to validate plans under permutations of item orders.
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3.4.1 Offline planner

The offline planner is required to accept some number of fixed items and a partial packing

sequence for the remaining items. Its interface takes the form

P ← Offline-Pack(σfixed1:j , P prior, σnextj+1:k) (3.6)

producing either a feasible plan P = (σ1:n, T1:n) or “failure.” The inputs σfixed1:j specify that

j items of the prior plan P prior should be kept in their previous positions, and σnextj+1:k are a

sequence of k− j > 0 items that should be placed next. The remaining n− k items can be

placed in arbitrary order. Specifically, the result must satisfy σ1:j = σfixed1:j , σj+1:k = σnextj+1:k,

and each fixed transform Tj for j ∈ σfixed1:k matches the corresponding transform in P prior.

The offline planner used here is a constructive, heuristic method that is easily modified

to handle the required changes. In Sec. 3.5 we also consider offline packing heuristics

that make the job of generating a nondeterministic plan easier, but these are not strictly

necessary.

3.4.2 Compatibility

A naive algorithm to solve NDOP would compute a packing plan for all n! orderings.

However, the notion of plan compatibility allows us to validate large numbers of orderings

for lightly-interdependent plans. For example, if we ignored manipulation feasibility and

equilibrium constraints, there is no sequential dependence between any two items, and

hence all orderings of items would be feasible under the following policy: when an item

arrives, just place it in its planned location. We define compatibility as follows:

Definition 8 (Compatible ordering). A packing plan P = (σ1:n, T1:n) is compatible with

an ordering σ′1:n if the reordered plan P ′ = (σ′1:n, T1:n) is feasible.

Hence, we can recast the problem of generating a feasible packing policy as one of

generating a set of feasible plans with sufficient coverage as follows:
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Figure 3.3: A plan and its dependency graph. C2 requires D1 to be present to

maintain the stability constraint, because otherwise the imbalanced weight on B

would cause tipping. Similarly, D2 depends on C1, and so forth for C3 and D3. This

CDG is compatible with orders of the form AB(C1D1)(C2D2)(C3D3) where the (XY )

denotes either XY or Y X.

Definition 9 (NDOP #2). Compute a set of feasible plans P1, . . . , Pm such that for any

order σ1:n ∈ Sn, there is at least one plan compatible with σ1:n.

Our NDOP solver formulates a packing policy as a set of packing plans P1, . . . , Pm

along with their associated constraint dependency graphs (CDGs) G1, . . . , Gm as defined

in Sec. 3.4.3. An individual packing plan can be used for the set of orderings that are

compatible with its dependency graph. If the union of the m sets of compatible orderings

covers Sn, then we are done. If not, we find an incompatible ordering using Alg. 5, and

generate a new plan for this ordering.

A QOP solver must address the problem that if any two plans share the same order

prefix, each item location in the prefix must be the same. Our algorithm uses the same

CDG data structure to calculate compatibility while generating an optimized policy tree.
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3.4.3 Constraint dependency graphs

A fundamental data structure that will allow us to verify compatibility is the constraint

dependency graph (CDG). This structure (Fig. 3.3) explicitly models the dependencies

between items, so that compatibility can be quickly verified.

Definition 10 (CDG). The CDG of a feasible plan P is a graph on vertices I that has an

edge (u, v) if some feasibility constraint requires item u to be placed before item v.

We can see that a CDG is a directed acyclic graph (DAG), because if there were a cycle

in the graph, by transitivity an item on the cycle would need to be placed before itself.

Moreover, a CDG can be replaced by its transitive reduction with no loss in compatibility

information.

To construct a CDG G = (I, E) of a plan P = (σ1:n, T1:n), we do so in incremental

fashion by testing all pairwise constraints. Observe that there is no edge (σj , σi) ∈ E for

i < j, and we need not add edges (u, σi) for any ancestors of σi already in the CDG. For

each index i in increasing order, we check all u ∈ σ1:i−1 for a dependency in reverse packing

order. First, if u is an ancestor of σi, it is skipped because σi is already dependent on

u. Next, the manipulation feasibility constraint of u is checked against σi. If so, we add

an edge (u, σi). If not, we proceed to check equilibrium of the partial stack that includes

σ1:i but omits u and all descendants of u. If there is no equilibrium solution, we add an

edge (u, σi) (see Fig. 3.3). It should be noted that there exist scenarios that are stable if

a single predecessor item is removed, but unstable if multiple predecessors are removed.

These examples, however, are convoluted “multiple see-saw” constructions, and would be

highly unlikely to be generated by an offline packing planner.

An ordering is compatible with a plan P iff it does not violate any dependency in P ’s

CDG. In other words, a feasible packing plan P with a dependency-free CDG G = (I, ∅) is

compatible with all orderings. More precisely, we can state:

Lemma 1. Let G = (I, E) be the CDG of a feasible plan P . An ordering σ′1:n is incom-

patible with P iff there exists indices u < v such that (σ′v, σ
′
u) ∈ E.
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Figure 3.4: A set of plans P1, . . . , P4 (top) and their dependency graphs G1, . . . , G4

(bottom). For any ordering beginning with A, there is at least one plan (P1 or P2)

compatible with it. But for any ordering beginning with BDA, CB, CD, DAC, or

DC, no plans are compatible.

In other words, a compatible ordering obeys all pairwise ordering constraints specified

by the edges of the CDG.

3.4.4 Coverage verification

A key subroutine in our algorithm is to verify whether a set of packing plans P1, . . . , Pm is

compatible with all orderings in Sn, and if not, to generate a counterexample (i.e., incom-

patible ordering). An example is shown in Fig. 3.4. Let us reduce this to a combinatorial

problem of validating whether a set of dependency graphs is compatible with all orderings,

and call it DEPSET-COMPAT.
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We present a recursive algorithm, which tries assigning each unassigned vertex v, and

recurses on the subset of plans in which v is a root. There are two base cases:

1. There exists a vertex v that is not a root in any Gi. Then, any ordering that starts

with v is a counterexample.

2. Gi has no edges for some plan Pi. The policy is feasible because Pi is compatible

with all orderings.

To verify faster, we also perform a singleton pruning step: if a vertex v is a singleton

(has no neighbors) in every G1, . . . , Gm, then v can be safely ignored. This is because v

can be assigned at any point without affecting dependencies.

The overall algorithm is given a vertex set I and the edge sets E1, . . . , Em of the CDGs

of P1, . . . , Pm as input, and is listed in Alg. 5. The return value is either “all compatible”

or a subsequence of I that is incompatible with every dependency graph. Line 1 processes

the first base case, and line 3 processes the second. Line 3 performs the singleton pruning

step, and Lines 4–14 perform the recursion. Lines 5–10 compute the list Ev of dependency

graphs that are compatible with assigning v at the current step, but with v is removed. In

Line 13, the vertex v is prepended to the counterexample of a recursive call, because the

counterexample is reached after assigning v.

A counterexample can often be found faster by ordering the vertices in Line 4 using a

heuristic. Our approach sorts the vertices v by the number of plans compatible with the

assignment of v (i.e., have v as a root).

Alg. 6 solves NDOP using this subroutine.

3.4.5 Quasi-online packing

Due to the need for shared transforms, QOP is not as amenable to elimination of orderings

via compatibility verification. A näıve method for QOP would build a policy tree by

enumerating all possible orders and ask for compatible plans.
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Algorithm 5: Verify-CDG-Coverage(I, (E1, . . . , Em))

input : a set of items I

dependency graphs (E1, . . . , Em)

1 if there exists v ∈ I that is not a root in any graph (I, Ei) then return “v

incompatible”;

2 if any Ei is empty, i = 1, . . . ,m then return “all compatible”;

3 Remove all vertices v from I that are singletons in every graph (I, Ei),

i = 1, . . . ,m;

4 for v ∈ I do

5 Ev ← ();

6 for i = 1, . . . ,m do

7 if v is a root in Ei then

8 Append Ei to Ev, but with v removed;

9 end

10 r ←Verify-CDG-Coverage(I/{v}, Ev);

11 if r =“σ1:j incompatible” then

12 return “v, σ1:j incompatible”

13 end

14 return “all compatible”
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Algorithm 6: NDOP

input : a set of items I

output: a solution set of plans P , or “failure”

1 E ←empty-list;

2 P ←empty-list;

3 while true do

4 r ← Verify-CDG-Coverage(I, E);

5 if r =“all compatible“ then return P ;

6 Let σ1:k be the incompatible ordering in r;

7 P ←Offline-Pack(nil, nil, σ1:k);

8 if P =“failure” then return “failure”;

9 Add P to P ;

10 Add CDG(P ) to E ;

11 end
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Specifically, let N be a node in the policy tree at depth k, which is associated with the

feasible plan P = (σ1:n, T1:n). For all non-placed items σ′k+1 /∈ σ1:k, we could call:

P ′ ← Offline-Pack(σ1:k, P, σ
′
k+1). (3.7)

If P ′ =“failure”, then failure is returned. Otherwise, P ′ is associated with a new child of N

in the tree corresponding to the choice σ′k+1, and the search can proceed recursively. Note

that if σk+1 was already the k+ 1’th item in P , replanning is unnecessary and we can just

set P ′ = P . With this check, only O(n!) calls to the offline planner are needed.

This procedure can be optimized by observing that all items that are roots of the

dependency subgraph CDG(σk+1:n, (Tσk+1
, . . . , Tσn)), can reuse P . In fact, all combinations

of roots can reuse P . Moreover, once roots have been assigned, any newly created children

can also reuse it.

To exploit this, our QOP planner performs a depth-first search while maintaining a

list of plans PN compatible with σ1:k (i.e., all Tj match, for each fixed j ∈ σ1:k). The

search proceeds to enumerate children of σ1:k. For each choice σk+1 and child node C,

if at least one plan in P is compatible with σk+1, replanning is not performed, and the

choice Tσk+1
is fixed. If multiple plans are compatible, the value of Tσk+1

that is compatible

with the most plans is used. PC is then set to the set of plans in PN for which σk+1 is

a root of the dependency subgraph, and whose placement of σk+1 matches Tσk+1
. If no

plan is compatible, then Offline-Pack is called as normal, and PC is set to contain only

the newly generated plan P ′. Moreover, we add P ′ to the sets PA for any ancestor of C.

This enables subsequent siblings, siblings of parents, etc. to use P ′ and avoid additional

planning. Pseudocode is given in Algs. 7 and 8.

3.4.6 Analysis

Here we show that NDOP inherits the completeness properties of the offline planner, but

QOP is incomplete. Even when the offline planner is incomplete, when the NDOP or QOP

result is not “failure”, the solution is correct. We also analyze the behavior of Verify-CDG-
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Algorithm 7: QOP-Recurse(N)

input : policy tree node N

1 Let σ1:k be the sequence of packed items in N ;

2 Let PN be the set of compatible plans with N ;

3 Let P be any plan in PN , or nil if PN = ∅;

4 if all σk+1 /∈ σ1:k are roots of P then return “success”;

5 for all items σk+1 /∈ σ1:k do

6 if no plan in PN is compatible with σk+1 then

7 P ′ ←Offline-Pack(σ1:k, P, σk+1);

8 if P ′ =“failure” then return “failure”;

9 PC ← {P ′};

10 C ← add-child(N, σk+1,PC);

11 For all ancestors A of C, add P ′ to PA;

12 else

13 Let Tσk+1
be the location compatible with the most plans in PN ;

14 PC ← {P ′ ∈ P |P ′ is compatible with Tσk+1
};

15 C ← add-child(N, σk+1,PC);

16 end

17 if QOP-Recurse(C,PC) fails then return “failure”;

18 end

19 return “success”

Algorithm 8: QOP()

20 root← make-node(nil, ∅);

21 if QOP-Recurse(root) is successful then return root;

22 else return “failure”;
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Figure 3.5: An example showing that QOP (Alg 8) is not necessarily complete even

with a complete offline planner. (a) The first recursive call produces a feasible plan

with A placed first. (b) Once item A is placed in the planned location, the plan is

infeasible for order ACB, as shown in (c). On the other hand, if A was placed as in

(d), a feasible QOP solution could result.

Coverage and demonstrate that it is NP-complete.

Correctness and completeness

NDOP inherits its completeness from the offline packing planner. To see this, first observe

that whenever NDOP returns a solution (Line 6), this solution is correct, because for

all orderings σ1:n ∈ Sn, Alg. 5 has shown that the solution contains some plan that is

compatible with σ1:n. Now consider the case where NDOP returns “failure.” This can only

occur when Offline-Pack returns failure for a partial ordering σ1:k (Line 7). If Offline-Pack is

complete, then there is indeed no solution compatible with this ordering, and hence NDOP

returns failure correctly. If it is incomplete, then NDOP may return failure incorrectly.

Assuming Verify-CDG-Coverage takes negligible time, the worst-case running time of

NDOP occurs when all n items are stacked upon one another. In this case, all n! possible

orderings must be examined for feasibility.

Unlike NDOP, QOP is not necessarily complete even if the offline planner is complete.

This is because the offline planner may commit early to a bad choice because assumes it

has control over future item ordering, as illustrated in Fig. 3.5. However, if it does return

a solution, then this solution is feasible even if a heuristic offline planner is used.
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Figure 3.6: (a) Worst-case behavior of Verify-CDG-Coverage occurs in an instance

with n plans, where n− 1 “books“ are stacked vertically with the n’th book stacked

horizontally on top. Every possible order of k ≤ n items is compatible with a set of

n− k + 1 plans, and a recursion depth of n is required. (b) With a slightly different

stacking, the dependency graphs are reversed. Only a depth 1 recursion is needed

due to the singleton pruning step, so running time is polynomial.

DEPSET-COMPAT is NP-Complete

We observe that Verify-CDG-Coverage terminates extremely quickly in many cases, but

can exhibit exponential behavior. An example is shown in Fig. 3.6.a, in which each of the

m = n plans has one item depending on all other items. At each level ` of the recursion

tree, there are n − ` valid CDGs, and all n − ` vertices are valid. Hence, the function is

called O(n!) times. In fact, we prove the following theorem:

Theorem 2. DEPSET-COMPAT is NP-complete.

Proof. The proof is via polynomial time reduction from 3-SAT. A 3-SAT instance con-

sists of n Boolean variables x1, . . . , xn and a logical expression in disjunctive normal form,

consisting of m clauses

(y11 ∨ y12 ∨ y13) ∧ · · · ∧ (ym1 ∨ ym2 ∨ ym3) (3.8)

where yij indicates either a variable or its negation, i.e., yij = xk or yij = ¬xk. We transform
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Figure 3.7: Illustrating the reduction from SAT. Each clause (upper left) is con-

verted into a dependency graph (lower left), and a counterexample (lower right)

ordering corresponds to a SAT solution (upper right).

any 3-SAT instance in this form into the complement of a DEPSET-COMPAT instance on

2n vertices and up to m dependency graphs. That is, when 3-SAT has a solution, the

DEPSET-COMPAT version returns an incompatible ordering which corresponds to a 3-

SAT solution, and when 3-SAT has no solution, the DEPSET-COMPAT version returns

“all compatible.” This construction is illustrated in Fig. 3.7 for a 2-SAT instance.

Specifically, let I = {v1, . . . , vn, v1, . . . , vn} be the vertex set. Consider the i’th con-

junctive clause in (3.8). First, if the same variable and its negation appear in the same

clause (e.g., x4 ∨ ¬x4 ∨ x6), we drop the clause because it is satisfied via any assignment.

Otherwise, we construct a dependency Ei as follows. If yij = xk for some k, construct an

edge (vk, vk). If yij = ¬xk, construct an edge (vk, vk). In the first case, this means that if

this dependency is violated, then vk will appear before vk in the ordering. In the second

case, the reverse is true. This is repeated for each j = 1, 2, 3 and i = 1, . . . ,m.

If the DEPSET-COMPAT(I, E1, . . . , Em) instance constructed in this way returns an

incompatible ordering, we observe whether each vk appears before vk. If so, we assign

xk ← T , and if not, xk ← F . The variables x1, . . . , xk are then a solution to 3-SAT. This

holds because in every clause yi1 ∨ yi2 ∨ yi3, the dependency graph Ei is violated in such a

way that makes the clause true.

Conversely, if the 3-SAT instance has a solution (x1, . . . , xn), the DEPSET-COMPAT
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instance has an incompatible ordering. It is constructed as follows: place vk before vk if

xk = T , and vk before vk if xk = F . This ordering violates at least one constraint in each

dependency graph.

Since each step in the reduction is polynomial time and NP-complete, DEPSET-COMPAT

is NP-hard. It is also in NP, since a nondeterministic recursion could enumerate all possible

orderings and check their validity in O(mn) time.

What is interesting about this reduction is that DEPSET-COMPAT is hard even if

restricted to seemingly easy classes of dependency graphs, e.g., separable, bipartite graphs

with at most 3 dependencies! Experimentally, we have observed that DEPSET-COMPAT

problems corresponding to hard 3-SAT problems (e.g., with clause-to-variable ratio of

∼4.24 [Fre96]) also exhibit exponential complexity when solved via Alg. 5.

3.5 Planning Heuristics

Although DEPSET-COMPAT is NP-complete, computation time of NDOP and QOP is

dominated by time spent in the offline planner, because each plan requires searching over

6D object pose. The number of plans requested, and hence overall running time, is greatly

dependent on the number of orderings compatible with previous offline plans. Hence,

it would be beneficial if the offline planner would generate packing plans that maximize

compatibility. We employ some heuristics that speed up the approach in common scenarios.

3.5.1 Dependency minimization heuristic

Constructive packing chooses an item’s location based on certain placement heuristics, such

as deepest-bottom-left-first (DBLF) [WGC+10], or heightmap minimization (HM) [WH19b,

WGC+10], to maximize packing density. For nondeterministic packing, we would like to

generate plans with few dependencies. We introduce a dependency count (DC) heuristic

that measures the number of items underneath the item at the given placement (i.e., number
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Figure 3.8: The dimensions (in inches) of containers 1–5 used in our experiments,

in order of increasing length + girth.

of ancestor nodes in the CDG). Our implementation uses a heuristic that is a weighted sum

of HM and DC.

3.5.2 Matching prior placements

In QOP it is beneficial for the offline planner to place as many “free” items (i.e., those

not in σfixed1:j or σnextj+1:k) as possible in the same location as the prior plan, since this will

maximize the likelihood that the plan is compatible with other branches in the search tree.

To implement this heuristic, when packing a free item, the location in P prior is checked for

feasibility before any other locations are tested.

3.5.3 Container optimization heuristics

During container optimization, it is helpful to limit exponential growth in running time by

replacing the infinite loop in Line 3 of Alg. 6 with a fixed number of iterations, or break

the recursion of QOP after the policy graph has grown too large. As the containers grow

wider / longer, the number of dependencies decreases because all items will be packable in

fewer layers. With a large enough container, all items are packable in a single layer. Hence,

if there exists a sufficiently large container, the optimization version will always terminate

with a feasible, but possibly suboptimal solution.
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Table 3.1: NDOP container optimization results

Items Success (%) Time (mean / max, s) # planner calls (mean / max)

2–5 99.3 73.0 / 1,813 1.3 / 9

5 96.9 94.4 / 1,417 1.6 / 14

10 64.0 1,048 / 33,300 5.2 / 118

3.6 Experiments

Our experiments test the NDOP and QOP algorithms with random item sets of 3D scanned

objects from the APC 2015 [Rut15] and YCB [CSB+17] datasets (94 objects total). The

containers used in these experiments are the five boxes used in the Amazon Robotics Chal-

lenge 2017 (Fig. 3.8), and are sorted by the length + girth metric (length + 2×width +

2×height), a commonly-used shipping measurement. All experiments were performed on

an Amazon EC2 m5d.12xlarge instance.

Our experiments use three testing datasets in which the item sets have different size:

a) typical shopping carts of 2–5 items, b) large sets of 5 items, and c) stress tests with 10

items. For each category, we generate 1,000 random item sets by drawing items at random,

and verifying with an offline planner that there exists is a feasible packing in one of the five

containers. In the 2–5 category, 250 item sets of each size are included. The results for the

NDOP planner, running in container optimization mode, are summarized in Tab. 3.1, and

Fig. 3.9 illustrates a solution. As might be expected, the running time and the number of

offline planner calls increases with the number of items, but we do not observe the expo-

nential running time of worst-case instances. Other experiments suggest the dependency

minimization heuristic reduces mean and maximum running times by approximately 20%

and 50%, respectively.

Observe also that the success rate drops with increasing numbers of items, as the 10-

item offline plans tend to be tightly packed even in the largest container. Note that it is
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Figure 3.9: An NDOP solution for packing 5 items in container 5.

not known whether an NDOP solution exists in these instances, so we cannot determine

whether the solver is failing incorrectly. Fig. 3.10 shows the distribution of the minimum-

cost container found. In cases with 5 or fewer items, NDOP often successfully packs in the

same box as the offline planner. Observe that with 5 items, approximately 5% of test cases

require container 5, even though they can be packed offline in containers 1–4. Fig. 3.11

illustrates an example of such a case.

Performance results for QOP in container 5 are given in Tab. 3.2, with a representative

solution shown in Fig. 3.12. Up to 5 items, the success rates are quite similar to NDOP,

but the maximum running times and number of offline planner calls tend to be significantly

larger. Other experiments suggest that employing the matching heuristic improves average

and maximum running time by over 50%, which explains the surprising result that QOP is

faster than NDOP on average. QOP struggles with 10 items, with a long-tailed distribution:

24 instances could not be solved within a 24-hour cutoff.
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Figure 3.11: A failure case for packing 5 items in container 3. The offline plan-

ner solves for the arrival order in (a) but fails on the order in (b) because there is

insufficient remaining space for the fifth item.

Table 3.2: QOP planning results in container 5

Items Success (%) Time (mean / max, s) # planner calls (mean / max)

2–5 99.4 22.4 / 1,520 1.4 / 43

5 97.0 65.1 / 5,800 2.1 / 46

10 43.7 2,850 / 85,478 45.8 / 5,363
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Figure 3.12: A QOP solution for 4 items in container 5. Due to the matching

heuristic, only four plans are needed (one for each item placed last).
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Chapter 4

In-hand Object Scanning via RGB-D
Video Segmentation

The chapter introduces useful tools to gather 3D shape information for an arbitrary object,

we proposes a technique for building full 3D models of an arbitrary object via in-hand

manipulations, in which the object is reoriented in front of a video camera with multiple

grasps and regrasps. 3D models with colors and accurate geometry are known to increase

robustness in a robot’s perception and manipulation. Therefore, building accurate 3D

models of task-relevant objects and recording their identities could greatly benefit the

autonomy of many robotic tasks in the environment.

In-hand object scanning is a convenient and inexpensive way to model a hand-sized

object, yet many significant challenges exist in tracking the manipulated object due to

fast movement, rapid appearance changes, and occlusions.We proposes a novel video-

segmentation-based object tracking algorithm that tracks arbitrary in-hand objects more

effectively than existing techniques. It also describes a novel RGB-D in-hand object ma-

nipulation dataset consisting of several common household objects. Experiments show that

the new method achieves 6% increase in accuracy compared to top performing video track-

ing algorithms and results in noticeably higher quality reconstructed models. Moreover,

testing with a novice user on a set of 200 objects demonstrates relatively rapid construction

of complete 3D object models.1

1This chapter is reproduced from Fan Wang and Kris Hauser, “In-hand Object Scanning via RGB-

D Video Segmentation,” in 2019 International Conference on Robotics and Automation (ICRA),

Montreal, QC, Canada, 2019, pp. 3296-3302.
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4.1 Introduction

The ability to build 3D models of the geometry and appearance of real-world objects has

long been essential in many application scenarios such as art and design, manufacturing

and packaging, augmented reality, and robotics. While early 3D model acquisition relied on

multiple calibrated scanners or accurate motion apparatuses [RHHL02, BR02, KHRF11],

the last decade has seen the introduction of low-cost RGB-D cameras like Microsoft Kinect

and advances in feature detection and automatic feature matching algorithms that have

made 3D object model acquisition easier than ever.

Among various 3D scanning techniques, in-hand scanning has attracted much research

attention [TG17, PASV15, WWLG09, PKA15]. Methods that require an object to be

stationary during the scan inherently carry the missing side problem [BR02], while in-hand

scanning can reveal all sides of the object, making it possible to reconstruct the complete

object without multiple model alignment in post-processing. The human hand is capable of

intricate motion when manipulating objects through gripping, grasping and turning, so this

is a natural way of presenting an object for scanning. It is also low-cost and flexible since it

does not require expensive equipment and calibration. Many reconstruction pipelines from

object-hand interaction require only an off-the-shelf RGB-D camera [TG17, PASV15].

Despite these attractive characteristics, 3D object modeling from in-hand object manip-

ulation remains a challenging problem. To obtain a high-quality object model, the target

object should be accurately separated from non-target objects. This separation is difficult

since hands may be similar to the target object in terms of color, motion, or appearance,

and furthermore, the target object itself undergoes significant changes in a short period of

time.

This chapter presents a 3D model acquisition pipeline from in-hand interaction. The

pipeline includes a novel object tracking technique and a set of reconstruction and post-

processing procedures. With this pipeline, a non-expert can scan arbitrary objects with

only a hand-held single RGB-D camera and light manual annotation.

To evaluate our work, we constructed a public in-hand object manipulation dataset
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Figure 4.1: Some successfully reconstructed objects from a 200-item test set,

scanned by a novice user of our system.
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consisting of 13 objects from the publicly available YCB object set [CWS+15] being ma-

nipulated by hand in front of an RGB-D camera. Experiments on this dataset demonstrate

that our method outperforms many state-of-the-art video segmentation algorithms in terms

of tracking performance and results in higher quality 3D reconstructed models. We also

asked a novice user to use our pipeline to scan 200 arbitrary items, requiring approximately

2.5 minutes of manual effort per object including scanning and annotation, and demon-

strates the capability to produce high-quality reconstructed models, shown in Fig. 4.1.

4.2 Related Work

An object scanning pipeline commonly consists of object-background segmentation, multi-

view registration, and registration refinements steps. Several in-hand scanning systems

have been presented [WLG08, WWLG11, TG17, RHHL02, PKA15]. Weise et al.[WLG08]

demonstrated real-time system reconstruction of textured objects from in-hand manipula-

tion using coarse to fine registration and online loop closure. Tzionas et al.[TG17] showed

the possibility of reconstructing featureless objects from hand motion cues, by minimizing

objective functions that consist of both visual correspondences and contact correspondences.

While the registration and refinement aspects of an object scanning system have been

extensively studied[WLG08, WWLG09, RHHL02, BR02, TG17], little work has been done

to address the unique challenges present in foreground - background segmentation in an in-

hand manipulation task, despite its importance being commonly acknowledged [WWLG09,

KHRF11, SMZ+16, PKA15].

Existing in-hand scanning systems address the segmentation task with simple ap-

proaches. Hand-object segmentation are commonly addressed by skin pixel identification

based on statistically color model [WLG08, TG17], or by having operators wear black gloves

[WWLG09, WWLG11, RHHL02]. To remove other unwanted backgrounds, depth thresh-

olding and black backgrounds are commonly used [TG17, RHHL02]. A more sophisticated

method is to perform segmentation in phase image as in [WLG08] to remove background
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that remains stationary.

However, those methods are not robust enough to achieve highly accurate object-

background segmentation. Color based skin-pixel segmentation, for example, can result

in a high false negative rate with hands under different lighting conditions and a high

false positive rate when objects being manipulated are close in color to human hands, as

illustrated in Fig. 4.2. The phase image segmentation cannot remove non-stationary back-

ground objects such as hands and arms. The black glove method might be the most robust

among all, but nonetheless requires only the hand and the object to be visible during the

entire scanning, which can be difficult for the operator to accomplish.

Our pipeline uses similar registration approaches to prior work, but to address hand-

object separation with more generality and to higher accuracy, we solve a semi-supervised

binary video segmentation problem, tailored for the hand-object segmentation task. Our

method can separate objects accurately from all unwanted backgrounds, including hands

of various skin tones, as well as other stationary or non-stationary objects not of interest.

Recent research on video segmentation-based object tracking can be roughly categorized

into unsupervised, semi-supervised, and human-in-the-loop approaches.

Unsupervised methods are fully automatic and require no human effort during run

time [LTHF17, XL16, WSP15, CTWY17]. While this approach is preferred when real-time

tracking is necessary, a challenge is to propose a foreground hypothesis without specific

knowledge on the actual object to track. Proposals are commonly formed from pre-learned

models of “object-like” regions using static cues such as convex regions, pixel group sim-

ilarities, or classification based on learning [HPL17, RT16, KMV+16] as well as motion

cues [TYB16, CTWY17], given that rigid foreground objects should move with coherent

motion different from the background. Unsupervised segmentation for object scanning is

difficult because pre-training is unlikely to apply to the large variety of arbitrary objects

to be scanned, and motion cues from human hand movement can mislead the algorithm.

Semi-supervised and human-in-the-loop methods require varying amount of human in-

teraction to specify the object of interest for higher accuracy [DAV]. In semi-supervised
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Figure 4.2: Skin regions identified by skin-pixel based segmentation described in

[VSA03]. This method cannot detect shaded areas of hand as well as accessories on

hand (jewelry, nail polish, etc.). It also falsely includes object regions with colors

close to human hands.

methods, the human provides an initial ground truth, typically for the first frame of a video

sequence. This ground truth could be a segment mask [CMPT+17, CTWY17] or user scrib-

bles annotating foreground and background [RKB04, BK04]. The algorithm then propa-

gates this annotation segment to the unlabeled frames. Some semi-supervised methods use

the first frame for fine-tuning a learned object model [CMPT+17, PKB+17, VL17] and then

perform per-frame segmentation. However, most semi-supervised methods use a propaga-

tion scheme to propagate the initial labels to successive frames [TYB16, PS14, CTWY17].

4.3 In-hand Object Reconstruction Pipeline

Our pipeline takes an RGB-D video as input, in which a user rotates the object in front of

the camera. The user can perform multiple regrasps to reveal all sides of the object. Our

method then uses a novel semi-supervised video segmentation technique, called BackFlow,

to segment the object from the hands and background. These object segments are then

registered to a global reference frame, and the overall model is post-processed to reduce

noise.
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Figure 4.3: The new sides problem poses a challenge for video segmentation al-

gorithms that rely on coherent object appearance. Tracking a can of tomato soup

with a hierarchical graph-based method [GKHE10] fails to grow the segmentation to

newly appeared top of the can.

4.3.1 BackFlow Video Segmentation Method

BackFlow is designed to handle many unique challenges for hand-object segmentation in

RGB-D videos. For example, the new sides problem occurs because objects being ma-

nipulated quickly undergo significant shape and appearance changes. These changes are

difficult to predict without prior knowledge of the object. Conventional video segmentation

methods have difficulty maintaining tracking (Fig. 4.3). Object-hand appearance sim-

ilarity is also quite common. Although the appearance of human hands varies from person

to person, various skin-tone colors are commonly represented on the packaging. Addition-

ally, the hand could also be wearing nail polishes or jewelry, which further complicates the

identification of hand from the object. Occlusion and large deformation are especially

prominent with human hands. Hands can occlude large portions of the object, and de-

form quickly and significantly. Finger-object motion similarity also tends to confuse

algorithms that rely on distinct motion cues.

BackFlow derives new object appearance hypotheses by deduction, rather than through

foreground coherence. It preferentially tracks background pixels and derives foreground

accordingly through a graph-based framework. Essentially, it assumes that what is not

background is likely foreground, and it attempts to track and detect the disappearance

and emergence of the background. The rationale behind this approach is that hands and
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background objects exhibit stronger spatiotemporal coherence compared with the target

object, and therefore are the better candidate to be tracked.

BackFlow requires no prior training and forms initial object proposals based on color

GMMs learned in the first segment. The proposals are adjusted during run-time with more

available frames. This method is most effective when the appearance and shape of the

foreground object evolve quickly while the background remains relatively stable.

The four main steps of BackFlow are described below:

Prepossessing and initialization

BackFlow first eliminates unnecessary background tracking. A depth cut-off on the color

images is performed that eliminates areas more than 1 m away from the camera. Then

it requires a human to initialize sure background pixels, either by providing background

scribbles or a segment mask. These annotations serve as hard constraints in graph-cutting

for the first frame.

Background pixel propagation

Next, we use optical flow [Far03] to propagate raw background pixels between two successive

frames. The flow is cross-examined by performing backward flow, and background pixels

with the inconsistent flow are dropped. Since most optical flow inconsistencies occur near

the motion edge, this helps prevent background labels from drifting into the foreground.

Superpixels are employed to guide the background propagation and to increase robust-

ness against drift. Specifically, we perform SLIC segmentation [ASS+12] with N = 20,000

superpixels on frames with 640*480 resolution. When propagating background pixels from

frame t to frame t+1, all frame t superpixels that contain raw background pixels are marked

as the background superpixels. We track the flow of all pixels within the background super-

pixels to the second frame and label frame t+1 superpixels that receive enough propagated

background pixels as new background superpixels. The use of superpixels provides addi-

tional color information and prevents drifts into neighboring groupings that differ in color.
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Figure 4.4: BackFlow takes user annotation of background or ground truth seg-

ment on the first frame and propagates labels as follows. 1) Initialize background

labels (superpixels) from user input. 2) Propagate background labels from frame t to

frame t+1 through optical flow. 3) Perform graph-based foreground derivation. 4)

Remove background labels in segmented foreground and grow background labels to

neighbourhood superpixels.

This measure also replenishes background labels within a superpixel under the assumption

that all pixels within a superpixel likely belong to the same label.

Segmentation with relaxed foreground derivation

Step 3 performs graph-based segmentation after the background pixels have been propa-

gated to the current frame. Pixels form vertices connected to neighbors and both back-

ground and foreground labels by weighted edges. The segmentation is formulated as an

energy minimization problem in which the energy function has the form:

E(L) =
∑
p∈P

Dp(Lp) + γ
∑

(p,q)∈N

V(p,q)(Lp, Lq), (4.1)

where L = {Lp|p ∈ P} is a labeling of image P, Dp(·) is the data penalty function assigning

labels to the vertex, V(p,q) is the smoothness term, and N is a set of all pairs of neighbor-

ing pixels [BK04]. γ is a parameter chosen to balance data and smoothness terms. The
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minimum-energy cut of the graph is therefore a partition of the vertices into two disjoint

sets, solved by min-cut/max-flow algorithms [BK04].

We use Gaussian Mixture Models (GMMs) to describe background and foreground

distributions similar to [RKB04]. We modify standard graph segmentation algorithms to

encourage foreground propagation and to rely more heavily on motion cues in the presence

of drastic appearance changes.

Background GMMs with K=8 components are learned on the first frame and used

throughout the video sequence, and foreground GMMs are learned on a sample of raw

pixels in the previous foreground segments. Specifically, we store past foreground pixels,

and after each new frame is segmented, we downsample the foreground set by 90% and add

10% new foreground pixels; this is to ensure a stable background proposal and a smoothly

transitioning foreground proposal as the object evolves.

In BackFlow, we formulate initial data penalty terms similar to Grabcut [RKB04],

which indicate the log likelihood of a pixel belonging to the foreground and background

GMMs, respectively:

D̃(αp, kp, θ, zp) = − log π(αp, kp) +
1

2
log det

∑
(αp, kp)

+
1

2
[zp − µ(αp, kp)]

ᵀ
∑

(αp, kp)
−1[zp − µ(αp, kp)],

(4.2)

where αp indicates background or foreground assignments and has value of 0 or 1 in hard

segmentation. θ stands for the GMM parameters. kp is the GMM component assigned

to the pixel and kp ∈ {1, ...,K} where K is the number of components in the GMMs. zp

the a pixel color in RGB colour space. The weights π, mean µ and covariance Σ are the

parameters for the Gaussians from the foreground and background distributions.

The data cost for each node is by default D ← D̃, except for the following exceptions.

For nodes already associated with background labels, we assign D to a high constant penalty

to be connected to the foreground and zero penalty to be connected to the background.

For unlabeled nodes, we further add a comparison step in which we equalize data penalties

assigned to both labels if a pixel only has a slightly lower probability belonging to the

foreground than the background proposal. The background-foreground assignment of such
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node is therefore determined by the assignments of neighborhood pixels that have a high

interacting potential to the node. Specifically, if

D̃(αp=1, kp, θ, zp) > D̃(αp=0, kp, θ, zp), (4.3)

and

D̃(αp=1, kp, θ, zp)− D̃(αp=0, kp, θ, zp) < N, (4.4)

then

D(αp=1, kp, θ, zp)← D̃(αp=0, kp, θ.zp), (4.5)

where N is the relaxation constant. Experiments find that the segmentation accuracy is

not greatly impacted by the value of N for 8 < N < 16.

The introduction of the relaxation constant encourages the inclusion of the newly ap-

peared foreground that is adjacent to the existing foreground. While this measure would

otherwise introduce false positives if the background is not densely labeled, the majority of

the background area is already correctly labeled. We also observed that the difference in

data penalties for newly appeared background (e.g., hands, arms) are usually much greater

than the relaxation constant.

A commonly used smoothness term (e.g., in Grabcut) is:

V (α, z) =
∑

(m,n)∈C

I[αn 6= αm] exp(−β||Zm − Zn||2)

z is the given image data, α is the background or foreground assignments for each pixel,

C is the set of all neighbouring pixels, ||Zm − Zn||2 is the Euclidean distance between

neighbouring pixels in RGB color space. β measures the inverse expectation of contrast

within the image.

In BackFlow we introduce motion cues into the smoothness term. To encourage consis-

tent labeling for areas with coherent motions, we use optical flow along with color dissimi-

larities for smoothness term calculations. We convert the flow vectors into images in HSV

color space where the Hue and Value are computed from the angle and magnitude of the
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Figure 4.5: Background labels (marked as red dots) grow gradually into the previ-

ously unseen palm while maintaining separation from the foreground object.

flow. The smoothness penalties are then taken as the smaller of the discontinuity in color

and flow:

V (α, z) =
∑

(m,n)∈C

I[αn 6= αm] min(exp(−βz||Zm − zn||2),

exp(−βf ||Fm − Fn||2)).

The expectation value βz and βf are calculated respectively for RGB image and the flow

image. In our implementation we use γ = 50 and N = 10. The cut is then performed using

Min-Cut/Max-Flow algorithms. The largest connected component in the result becomes

the foreground segment.

Removing and growing background labels

Finally, we extend background tracking into the newly appeared background. After segmen-

tation of each frame, all superpixels that are spatially adjacent to the existing background

and are not segmented as foreground become background superpixels and will be tracked

in the next frame as shown in Fig. 4.5.

4.3.2 3D Reconstruction

The segmented frames are registered to produce the final model. To avoid redundant

information and bad frames with severe motion blur/noise, keyframes are selected for reg-

istration. Pairwise registration between keyframes is performed using sparse feature-point
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matching followed by dense Iterative Closest Point (ICP) [BM92] alignment. Finally, we

run pose-graph alignment and postprocessing.

By default, we select every 10th frame as the keyframe if it either 1) matches enough

feature points from the previous keyframe or 2) its point cloud can be matched above a

certain percentage with the previous keyframe with ICP. Otherwise, we try to match the

previous keyframe with the 9th frame, 8th frame ... until a match is found. If no match

exists, we will select the 10th frame and continue with the process.

For pairwise registration we extract SIFT (Scale-Invariant Feature Transform) [Low04a]

features from consecutive keyframes and match feature pairs through a 2D RANSAC (Ran-

dom sample consensus) homography process, and use the depth correspondence of the

matched feature point to find the best 3D rigid body transformation between the two

frames. If insufficient matching features are found, dense ICP is performed between two

point clouds to estimate the transformation. We use the colored point cloud registration

by Park et al. [PZK17] implemented in Open3D [ZPK18]. This ICP variant jointly opti-

mizes both point-to-plane distances and minimizes the error of projected color. Pose graph

optimization is used to obtain the final registration transforms in the global frame, with

methods described in [KGS+11].

For postprocessing, the aligned colored point clouds are stored in voxel grids of dimen-

sion 2mm, and each voxel is optimized to reject color outliers, and grids with less than 2

points are not used. Registered point clouds then go through Poisson surface reconstruction

[KH13] to create watertight surfaces, and isolated components whose diameter is smaller

than 10% of the mesh diameter are removed to achieve the final models.

4.4 Experiments

4.4.1 RGB-D in-hand object manipulation dataset

Although there are several popular video segmentation datasets, there is no existing in-hand

object scanning RGB-D video dataset with dense pixel level annotations. To systematically
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Figure 4.6: RGB-D in-hand object manipulation dataset contains RGB-D video of

13 non-duplicate items from YCB food category, including Pringles, mustard, Cheez-

It, sugar, Spam, tomato soup, banana, pear, plum, strawberry, orange, lemon and

Jell-O.

evaluate our methods and to aid the research community, we introduce the RGB-D In-

hand Object Manipulation Dataset (Fig. 4.6). This dataset contains 13 sequences of in-

hand manipulation of objects from the YCB object set [CWS+15], recorded with an Intel

RealSense SR300 RGB-D camera. Each sequence ranges from 300 to 800 frames in length

(filmed at 30 fps) and contains in-hand manipulation of the objects revealing all sides.

The dataset is complete with color images, depth cut-off images, and depth mages. The

pixel-wise annotation aligned to the depth cut off image is provided every 10 frames. The

dataset and results can be downloaded at the RGB-D In-hand Object Manipulation website

at https://www.rgbdinhandmanipulation.com.

The performance of BackFlow is compared to other state-of-the-art segmentation meth-

ods in Tab. 5.2. OSVOS is a semi-supervised fully-convolutional neural network (FCNN)

that was one of the top-performers on DAVIS 2017 [CMPT+17]. SFL indicates the un-

66



Table 4.1: Segmentation Results

OSVOS SFL HVS SPBS BackFlow

IoU 87.97% 29.61% 52.05% 31.52% 93.52%

FP 4.17% 50.59% 1.7% 49.99% 2.12%

FN 7.85% 13.90% 46.29% 18.48% 4.36%

Figure 4.7: Per sequence accuracy (IoU) comparison of BackFlow to other state-of-

the-art video segmentation methods.

supervised FCNN technique SegFlow [CTWY17]. Both OSVOS and SFL were pre-trained

on the RGB-D Object Dataset [LBRF11] while OSVOS was additionally fine-tuned on the

initial segment of each sequence. HVS is the hierarchical graph-based video segmentation

of [GKHE10]. SPBS indicates skin-pixel based segmentation, which is a GMM method

described in [VSA03], trained on the UCI skin segmentation dataset [Bha].

These experiments separate each object handling sequence into sub-sequences of 100

images. A ground truth annotation is given on the first frame of each sub-sequence, and the

segmentation accuracy is tested on the remaining 99 frames. We measure the intersection

over union (IoU), areas of false positives over union (FP) and areas of false negatives over

union (FN). BackFlow outperforms other state-of-the-art approaches by almost 6% percent

in overall accuracy and achieves lower false positive and false negative rate. Per-sequence

results are shown in Fig. 4.7.

The reconstructed models of several objects from the dataset are shown in Figure 4.8.
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Figure 4.8: Reconstructed models from BackFlow segmentation results.

The textured (color or geometry) objects are reconstructed complete with all sides, except

when the surface material (e.g., black, highly reflective) cannot be captured by a depth

camera. Our reconstruction pipeline currently cannot obtain a complete model with sym-

metrical and texture-less objects, such as pear and orange, and the registered point clouds

appear as incomplete ”shell”.

Fig. 4.9 shows some example of unprocessed point cloud reconstruction from BackFlow

against the next-best performer OSVOS. To qualitatively measure the quality of the re-

constructed models, we further compare all 13 registered point clouds constructed from

BackFlow and OSVOS to the ground truth Poisson meshes provided in the YCB dataset.

The evaluation metric used is the one-sided Hausdorff Distance implemented in MeshLab.

To measure it, the registered point cloud and the YCB mesh are aligned using manual key
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Figure 4.9: Comparison of reconstructions from OSVOS and BackFlow.

points matching (we use the same rigid transformation for both registered point clouds),

then the point cloud is sampled to 20,000 points and for each sample, the Hausdorff Distance

to the closest point over the YCB mesh is computed.

Shown in Tab. 4.2, the Hausdorff distance measurements for BackFlow reconstructed

models are around 50% smaller than OSVOS in all categories including max distance, mean

distance, and RMS. The max distance in BackFLow is caused by failure to segment out a

human finger in parts of the banana sequence, the artifact is reflected on the reconstruct
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Table 4.2: Hausdorff Distance measurements w.r.t. bounding box size of the recon-

structed models

Max distance Mean distance RMS

BackFlow 0.195 0.014 0.017

OSVOS 0.427 0.024 0.031

(see Fig. 4.8), yet the max distance is still much smaller than that of OSVOS. While

BackFlow only improves segmentation performance by 6%, the resulting reconstructions

are of significantly better quality, as these segments maintain a better consistency and have

a lower false positive rate.

4.4.2 Novice scanning of many items

To evaluate the ease of use and robustness of the pipeline when handled by a novice user,

we presented our software to a volunteer who is unfamiliar with 3D object modeling. 200

grocery items were purchased satisfying the following criteria: 1) the size of the object

should be easily manipulated with a single hand, 2) the object does not contain large black

or transparent areas, which cannot be captured with a structured light RGB-D camera, 3)

the object is textured or non-symmetric, 4) objects should not significantly deform during

manipulation.

The volunteer was taught how to use the software and was told to reveal all sides of

the object. No other instruction on how to manipulate the objects was given. We record

the total amount of time needed, including the instruction time, and several small breaks,

for the volunteer to finish scanning the objects. The volunteer then annotates every 100

frames of the scan sequence as initial labels.

On average, the volunteer took 102 seconds to scan each item, plus another 36 sec-

onds for labeling (averaging 4.9 frames per item). Segmentation and reconstructions then

automatically run to generate object reconstructions. The total labor time used for recon-

70



structing 200 models is 7 hours and 40 minutes, or 1 fps for segmentation and reconstruction

on a CPU computer.

As shown in Fig. 4.1, the pipeline is robust enough to generate many visually high-

quality reconstructions with no hands or any other background objects found in any recon-

structed model. There are also failed reconstructions, which are most frequently caused by

misaligned frames during registration. Better registration techniques are likely to improve

the results further.
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Chapter 5

Systems and Analysis for Robust Robotic
Packing

While the offline packing algorithm are guaranteed to be feasible under perfect modeling

and precise execution, but making packing reliable enough on a actual physical system

remains a major challenge due to numerous sources of system uncertainties. This chapter

studies how errors in vision, grasping and modeling give cause cascading errors in the overall

robotic packing pipeline. A systematic evaluation on a physical packing testbed studies the

sources of error and models their magnitude. Experiments are conducted to quantify the

impact of such errors on the overall packing success rate in Monte Carlo simulation and

on the physical testbed. It also presents strategies for improving the robustness of robotic

packing: 1) using conservative planning to ensure feasibility under uncertain ranges of

model parameters, and 2) employ closed-loop vision and manipulation so that a robot can

dynamically react to errors and correct for them. Empirical results demonstrate that the

closed-loop packing and robust planning increase the overall packing success rate by 15%,

from 83% to 98%, when compared to the baseline system. 1

1This chapter is reproduced from Fan Wang and Kris Hauser, “Systems and Analysis for Ro-

bust Robotic Packing,” in submission to IEEE Transactions on Robotics (T-RO). This work is

supported by an Amazon Research Award.
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5.1 Introduction

Small disturbances can cause serious, cascading failures, particularly if the packing ar-

rangement is dense: if an object unexpectedly shifts during execution, it will likely leave

insufficient space for remaining items in the selected container. These failures could cause

damages to the items, since an industrial robot is stiffly geared and blind execution of

pre-planned paths can exert very high forces when an unexpected obstacle is encountered.

Such failures are also difficult and time-consuming to recover from, e.g., remove all placed

items in the old box and replace them in a larger box.

In this chapter we analyse various sources of uncertainty inherent to automated packing

systems, and propose two strategies for improving the reliability of packing under such

uncertainties. To the authors’ knowledge, this is the first complete robot packing system

that is able to handle irregular objects.

The system uses state-of-the-art perception and planning components. The system

picks from a set of arbitrarily shaped objects on a flat picking area and packs them in a

shipping box. We use a planning algorithm that produces robot packing plans [WH19b],

assuming a given location and dimensions of the box, 3D models of each object to pack,

and initial object locations. We produce this input using a calibration setup step and a

vision system to perform object detection and pose estimation. The robot then executes

grasping and stowing motion to place each object into the container as planned.

The uncertainties in the system include object modeling errors, such as incorrectly

estimated object shapes, poses, deformation, etc., manipulation errors, such as failed grasps,

object reorientation during grasping, as well as other system-level uncertainties such as

calibration error. We develop two strategies to mitigate the impact of uncertainties and

increase the robustness of the packing execution. The first strategy is to plan conservatively

during the offline planning phase to ensure execution feasibility under positioning error.

The second strategy is to employ closed-loop vision and manipulation so that a robot can

dynamically react to errors and correct them. Specifically, the system re-senses the object

pile after each placement using visual and depth information and then replans the best
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subsequent placements if the pile deviates from the plan significantly.

We perform exhaustive testing in both Monte Carlo simulation as well as on a physical

robot, under different packing strategies. In Monte Carlo simulation, we test the packing

success rate while systematically introduce positioning errors of arbitrary magnitudes on

thousands of object sets. We have also tested those strategies on the physical platform

(Fig. 5.1). Empirically, the execution success rate on the physical platform with an open-

loop baseline system is quite low, at 83%, due to multiple sources of uncertainty causing

cascading errors. The proposed strategies for robust robot packing raise the packing success

rate to 98%.

5.2 Related work

Recent years have seen research that is more comprehensive in addressing practical con-

straints encountered in warehouse packing automation. For example, Ye et al. [YR18]

develop a real-time state estimation system that can recover the pose and contact forma-

tion of a rectilinear object in grasp relative to its environment. By fusing visual and force

sensing, they demonstrate the application of inserting an object picked by a suction cup

into a tight space. This work, however, does not focus on planning, but rather on the fitting

of a single item into a confined space.

The work arguably closest to ours is by Shome et al. [STS+19]. They designed a com-

plete robot packing system using minimalistic hardware stack of a single robot with suction

gripper equipped with RGB-D cameras, similar to ours. They have also employed different

techniques to achieve robust packing that minimizes failure conditions, One example of

such technique is using the suction gripper as a push finger that executes three pre-defined

key manipulation primitives to tight packing in against perception and positioning errors.

The key difference between their system and ours is they test on uniformly shaped cuboid

objects, where the planning aspect is relatively simple. Ours focuses on tight and stable

placement plannings for arbitrarily shaped objects that can be convex or concave, which is
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a much harder planning problem.

We use the offline planner from our previous work that produces robot-packable object

placements. Compare with the other methods mentioned, this algorithm accepts arbitrary

shaped objects and provides verification that a container fits all the objects, therefore more

suitable for a warehouse packing scenarios where a set of customer ordered items need to be

packaged into a single shipping box. The other rationale behind using the method is that

compared to compliant motion-based packing as in [STS+19, YR18], which intentionally

introduces collision to the object during manipulation to force tight placement, planning

for high volume density packing likely results in less damage to the object during packing

execution.

5.3 System setup and error analysis

In this section, we first introduce our hardware and software setup is fairly representative

of current state-of-the-art sensing, perception, and planning for warehouse manipulation.

Then we identify the sources of error in such a setup that may lead to failed packing, and

propose two strategies for mitigating these errors.

5.3.1 Experimental setup

A 6R industrial robot (Universal Robot UR5e) is equipped with a suction gripper (Robotiq

EPick) and a compliant suction cup (Fig. 5.1). One RGB-D camera (Realsense SR300) and

two high-resolution stereo / structured light black-and-white depth cameras (Ensenso N35)

are used. An RGB-D / stereo pair is mounted overhead looking down over the picking area,

and the other stereo camera is mounted looking down the packing area, shown in Fig. 5.2.

This setup allows us to combine both the color information from the RGB-D camera and

the high-quality point clouds from the stereo cameras. The high-quality point cloud enables

the pose recognition pipeline to achieve better accuracy compared to the RGB-D data.

The entire system layout is illustrated in Fig. 5.2. In the picking area, objects are placed
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in arbitrary locations. The system assumes that objects are drawn from a known set, whose

3D models are available. In addition, all objects in the picking area will be packed, with

their initial locations not touching. In the packing area, a predetermined box footprint

area is marked off, and a box with matching dimensions is placed by hand to align with

the footprint.

The software pipeline consists of calibration, perception, and planning. The calibration

steps include:

• Factory-specified tool center point and camera intrinsic parameters were used.

• Camera extrinsic calibration using robot-mounted checkerboard

• The box footprint location is calibrated by jogging the robot to touch the footprint

corner locations. The footprint corners are set to the tool center point coordinates

relative to the robot base.

Object identification and pose estimation are then performed with the following steps:

1. Plane segmentation removes the tabletop from the point cloud.

2. Region growing segmentation [AB94] is used to segment object point clouds.

3. Pointcloud segments are projected onto the RGB image to obtain an object ROI.

4. The object is identified using a convolutional neural network model [HZRS15], trained

on the experiment objects.

5. A CNN pose estimation model gives an initial estimate of object pose [WXZ+19].

6. If fitness [ZPK18] of the CNN estimation is below a threshold, point-cloud only

template matching is performed.

7. The pose is fine-tuned with iterative closest points (ICP) [RL01b].
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The packing algorithm [WH19b] chooses an object packing sequence and generates a

grasp location and packing pose for each object. Top-down loading is performed. The plan-

ner checks several constraints: 1) no excessive force on the gripper caused by misalignment,

2) the loading trajectory is collision-free with the container position and objects already

placed, and 3) stability of the object under gravity in the stack of existing items.

We suppose two forms of sensor feedback during/after packing execution with the robot

arm:

• Force feedback, via the force/torque sensor on the UR5e’s wrist, is used for guarded

moves during packing. This prevents crushing items.

• RGB-D and stereo cameras provide an overhead image of how items have been packed

in the container.

5.3.2 Factors Affecting Packing Success

Packing success is defined by a final state having all objects unbroken and packed within

the container’s dimensions.

Because the planner performs collision and stability checking, if the world behaved

exactly as modeled, then the executed plan would be guaranteed to yield a successful

packing. However, several errors are introduced by the execution pipeline.

We identify and describe nine key error sources:

1. Camera calibration error εcal.

2. Object identification error εID.

3. Pose recognition error εpose.

4. 3D geometry modeling errors εgeom.

5. Center of mass specification errors εcm.

6. Grasp positioning error εgrasp.
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7. Grasp acquisition (lifting) error εlift.

8. In-transit manipulation error εmanip.

9. Box placement error εbox.

Camera calibration error in the picking area causes deviations in the robot-relative

object pose estimates, adding to problems acquiring a grasp. Camera calibration over

the container leads to collisions with objects and walls of the container in the closed-loop

packing strategy.

Object identification error leads the planner to choose a different 3D reference model

than the actual object’s geometry. In packing setups where the correct subset of items

must be picked from a larger collection, this could lead to more serious errors where the

wrong item is packed. Our problem definition assumes that all presented objects must be

packed, so object identification error is correctable during packing.

Pose recognition error leads to misalignment of the true object geometry and the 3D

reference model used in grasp and packing planning. This causes grasp failures and inad-

vertent collisions during loading.

The 3D geometry of each object was acquired using a 3D scanner and multiple view-

points. There is inevitable noise in these models, particularly noticeable in the underside

of the object. Moreover, the scanned items were newly bought objects, and as items ex-

hibited wear and tear during our experiments, some items underwent slight deformations.

Although we do not have ground truth, we expect overall geometry errors to be less than

5 mm.

Centers of mass of objects are not measured precisely, and may also change with the

object orientation (e.g., product settling in a box). This causes potential problems with

grasp acquisition and inaccurate stability tests in the planner.

Grasp positioning errors occur when the suction gripper shifts the object during grasp-

ing. The related grasp acquisition errors occur when the gripper cannot achieve adequate

suction to lift the object. In-transit manipulation errors occur when the robot prematurely
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loses grip of the object, e.g., by causing large accelerations.

Finally, box placement errors can cause collisions with the sidewalls during packing.

Overall, these errors form cascading effects down the pipeline to contribute to unex-

pected events, such as toppling object placements or unexpected collisions, which lead to

packing failures, as shown in Fig. 5.3. Informally, we refer to events in which an object hits

a container wall or other objects prematurely as “smashing,” and events in which an object

falls over or shifts as “toppling.” Note that the packing loop is performed N times, where

N is the number of objects, so the system has an opportunity to measure and correct for

errors accumulated during packing.

5.4 Error reduction methods

We propose two methods to reduce errors. The first strategy is closed-loop packing, which

makes use of sensing feedback to adjust the packing plan so that if an object is grasped

incorrectly or falls over during placement, subsequent steps can adapt to the new knowledge.

The second strategy is robust planning, which predicts the future effects of uncertainty so

that unexpected behaviors are less likely to occur. To evaluate the effectiveness, we perform

experiments with four variations of planning and executing strategies.

1. V1- Baseline: Plans are generated and executed, assuming perfect models.

2. V2- Robust planning: The packing planner is modified to avoid tight fits.

3. V3- Closed-loop vision: The container sensor re-senses the object pile after each

placement. If the heightmap of the pile deviates from the plan, then a replan is

triggered.

4. V4- Robust planning and closed-loop vision: Both V2 and V3 strategies are

employed.

Strategies V3 and V4 do not consider significant rearrangement of objects within the con-

tainer (e.g., repacking), although we do allow the robot to push objects that have stuck
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outside the container. We describe these strategies in more detail below.

We implement a grasping controller based on end effector force feedback, which is used

in all experiments. During grasping, if the robot’s force sensor detected that the object

was not successfully lifted, the robot will attempt the next computed grasp pose that can

achieve the planned object placement with a collision-free loading motion. Moreover, while

packing an object into the container, if a contact force exceeding 20N is sensed, the object

will be released. This avoids crushing objects during “smash” events.

5.4.1 Open-loop packing baseline

This section provides details on the packing planner and vision system, which are used as-is

in the baseline packing condition.

Packing planner

The packing planner algorithm from [WH19b] can be summarized as follows. The input is

a set of N objects with reference geometries G1, . . . ,GN , where Gi ⊂ R3, and initial poses

P0 = (P 0
1 , . . . , P

0
N ), where P 0

i ∈ SE(3). Also, C is given as the free space volume of the

container. The problem is to find a placement sequence S = (s1, . . . , sN ) of
{

1, . . . , N
}

,

grasp poses G1, ..., GN , and placement poses P = (P1, . . . , PN ), Pi ∈ SE(3), such that each

placement satisfies a set of robot-packable constraints.

Let Pi · Gi denote the space occupied by item i when the geometry is at pose Pi. The

solution packing should satisfy the non-overlap constraints

(Pi · Gi) ∩ (Pj · Gj) = ∅, ∀i, j ∈
{

1, . . . , N
}
, i 6= j, (5.1)

containment constraints

Pi · Gi ⊆ C, ∀i ∈
{

1, . . . , N
}
, (5.2)

for each k = 1, . . . , N , stability constraints

isStable
(
Psk · Gsk , C, Ps1 · Gs1 , . . . , Psk−1

· Gsk−1

)
(5.3)
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and manipulation feasibility constraints:

isManipFeasible
(
Psk ·Gsk , Ps1 · Gs1 , . . . , Psk−1

· Gsk−1

)
. (5.4)

Non-overlap and containment constraints are calculated using standard collision detec-

tion methods. Stability is checked using a convex program, while manipulation feasibility

requires 1) finding a feasible grasp pose and 2) ensuring that a top-down loading motion is

collision-free both for the selected object as well as the robot.

For grasp planning, we use a point cloud-based planner that generates a set of vacuum

grasp candidates, ensuring that the grasp location is nearly flat, the suction direction is

nearly normal to the surface, and the center of mass is almost underneath the grasp point.

Specifically, the grasp point must lie within a radius r = 2 cm in the horizontal plane

to the centroid of the observed point cloud segment. The areas under the gripper should

be planar areas (80% of the surface points directly below the tool are within 0.3mm to the

estimated plane), which helps the vacuum opening to grasp normal to the surface.

For use in the planner, the set of grasp candidates is tested one by one for manipulation

feasibility, i.e., with the chosen grasp pose, the robot can transfer Gi from P 0
i to Pi without

collision and with successful IK solutions being found along the trajectory. Moreover, in

the packing pose, the resulting gripper axis needs to be within a tilting angle θ = π/4 to

the Z-axis to prevent excessive torques being applied at the gripper.

Pose recognition

The pose recognition pipeline estimates P 0
i for i ∈ {1, . . . , N} for use in the planner.

First, we acquire partial pointcloud segments for G1, . . . ,GN . This is done through

a process of plane segmentation and distance calculation that removes all observation

not on the picking station. The remaining pointcloud is segmented by Point Cloud Li-

brary(PCL)’s [RC11] implementation of region growing segmentation [AB94]. The algo-

rithm partitions the points that are close enough in terms of a smoothness constraint.

Next, the partitioned pointcloud segments are projected on the color image obtained

with a RealSense camera. Pixels inside the bounding box of the projects are cropped

81



into a color image of each individual object. The ID of the object is classified with

ResNet18 [HZRS15], trained on the experiment dataset using Pytorch [PGM+19].

For the experiment, we assume that ∀i ∈ {1, . . . , N},Gi is sitting on a tabletop with

pose P 0
i , where the orientation component of P 0

i is a planar stable orientation for Gi.

Therefore, pose recognition estimates the translation of Gi while R0
i is from a finite subset

modulo rotations about the vertical axis. We initialize the estimate R0
i from the Dense

Fusion [WXZ+19] algorithm. Inputs to Dense Fusion include a pointcloud, cropped color

image, and ID for the corresponding object segment. If fitness [ZPK18] for this estimation

is below a certain threshold, a template matching technique is used as a fallback. Template

object point clouds are generated at planar-stable orientations, and the best-fit match to

the point cloud observation is selected.

Whether Dense Fusion or template matching is used for the initial alignment, we follow

this with a dense point-to-plane Iterative Closest Point (ICP) [RL01b] alignment for fine-

tuning. This is performed using the implementation from Open3D [ZPK18].

5.4.2 Closed-loop packing

In closed-loop packing, we monitor and remodeled the object pile after each placement.

A failure is detected if the pile shifted significantly from expected, preventing subsequent

items from being executed as planned. In case of failure, we replan the packing locations

of the remaining items while maintaining consistency in the previous plan where possible.

We also detect whether an object is lying partially outside of the container, and perform a

push maneuver to attempt to push the object back in.

Specifically, with the overhead depth camera, we capture a pre-placement depth map

of the container. If the incoming item’s 3D model at its planned packing location is in

collision with the pre-placement heightmap, we count the number of colliding pixels. A

“significant deviation” is triggered when this count exceeds a threshold of 20% of pixels

belonging to the item.

If no significant deviation is determined, the item is placed to the planned transform as
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usual, which helps maintain coherence with the existing plan. If a significant deviation is

detected, the strategy replans a new optimal placement for the infeasible object given the

pre-placement heightmap. Rather than trying to identify the pose of each object in the pile,

which is prone to significant errors, we simply treat the heightmap as the geometry of an

object rigidly-fixed to the container. The use of the sensed heightmap as a collision geometry

suffices for collision checking between the robot and gripper, and stability checking still

verifies whether there is sufficient friction between a rigid pile and subsequent placed objects.

However, treating the pile as a rigid, unmovable object incurs some loss of information for

the stability constraint checks, so the planner may decide to put the object in a location

an underlying object may shift or topple.

To perform the push maneuver, we capture a post-placement heightmap, and detect

whether any object’s horizontal extent surpasses the dimensions of the container. If so, we

aim the robot’s gripper to push in a straight line perpendicularly to the box wall, with the

end effector’s lowest portion slightly above the box’s maximum height. This movement is

aimed at the geometry center of the portion of the object outside the container dimensions.

5.4.3 Robust planning

Robust planning avoids tight fits with a threshold distance of δ. Placements closer than δ

to the container wall and placed objects will be penalized in the offline planner.

In [WH19b], a candidate placement is scored as follows:

c · (X + Y ) +
w−1∑
i=0

h−1∑
j=0

H ′[i, j] (5.5)

Where X and Y are the translation of the object inside the container at a given ori-

entation. H ′ is the sum of the container heightmap assuming the object is placed at the

candidate placement. The heightmap is a 2D image of width w and height h, and c is

a small constant. For robust planning, we add an extra term to the scoring function to
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penalize tight fit:

c · (X + Y ) +
w−1∑
i=0

h−1∑
j=0

H ′[i, j] + C/max(dmin, δ) (5.6)

Where dmin is the minimum horizontal distance between the item and the pile or the

container wall. This is computed from the heightmaps of the pile and the item being placed.

To compute the minimum distance, we only consider pixels in the pile/container heightmap

whose pixel height is larger than object placement height Z and x-y location within and

near the object 2D projection onto the x-y plane. The minimum of all horizontal distances

between object pixels and the pile/container pixels is taken as dmin. The value C is taken

to be a large constant such that C/δ dominates the other two terms in the sum.

It should be noted that conservative planning may fail to find a plan when non-

conservative planning would succeed. To address these cases, the planner tries to replan

with a smaller δ that decreases linearly until it is 0. If the δ = 0 case fails, we declare

planner failure.

5.4.4 Closed-loop packing and robust planning

In our final experimental strategy, we combine both closed-loop repacking and robust plan-

ning. This is mostly a straightforward combination, except that we note that when δ is

decreased due to a planning failure, we maintain the decreased value for subsequent plan-

ning steps.

5.5 Analysis and experimentation

A systematical evaluation is performed on the proposed packing system that studies the

sources of error and model its magnitude. Experiments are conducted to quantify the

impact of such errors on the overall packing success rate in Monte Carlo simulation with

bullet simulator [CB19] and on the physical testbed.
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5.5.1 Itemset

15 real-world items from the YCB video object dataset [XSNF17] are selected that are

mostly rigid, opaque, graspable, visible to the depth camera, and in a wide range of shapes

and weights (Fig. 5.6). High-quality object meshes for the 15 items are available so that

we can simultaneously perform the evaluation on both physical and simulation testbeds.

5.5.2 Uncertainty evaluation

We collected a dataset of all experiment items placed in various poses and positions on

the picking area, complete with RGB images, depth images, and pointclouds, taken by

Realsense and Ensenso cameras in their overhead mounting positions. Around 200 poses

and positions are taken for each object. 70% of the dataset was used for training, and the

remaining 30% of the dataset was withheld for testing.

Object identification

In our test set, object segmentation was 100% successful because the input objects were

placed in isolation. Our object recognition pipeline achieved a 98.5% top-1 accuracy on the

testing set, which indicates that for 7.2% of 5-item order sets, at least one of the objects

will be misidentified. Note that because all objects in the packing area need to be packed,

a misidentified object will not necessarily lead to failed packing. Instead, it contributes to

a (potentially substantial) geometry modeling error.

6D pose estimation

To obtain the pose estimation error, the 6D pose estimation result from our pipeline is

further corrected by manual alignment of the projected and ground truth (using the Meshlab

software). We considered using an alternative approach to pre-define a ground truth pose

and manually align the object to this pose, but we found that symmetric objects (e.g.,

boxes, cylinders) induced large pose error measurements, even though these errors would
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have virtually no effect on picking and packing. On our test set, the average translation

and rotation error is 0.7 mm and 0.3 rad.

Rare errors

Grasp acquisition errors were not observed in our setup (so εlift ≈ 0), in large part because

we chose objects from the YCB dataset that were more easily lifted by suction. In-transit

manipulation errors never occurred during our experiments (εmanip ≈ 0). Box placement

error is also quite low (εbox ≈ 0) compared to other sources of error, e.g., calibration,

because it is relatively simple to align the box to within a millimeter or two of the calibrated

footprint. Moreover, it would be a simple matter to add rigid fixtures to the packing area

to constrain the box even further. Since these errors are so low, we do not include them in

our analysis.

5.5.3 Summary statistic: placement error

Observe that calibration, pose estimation, and grasp positioning errors all contribute to

the pose of the object-in-hand, which leads to an ultimate error in where the object is

packed. Specifically, this is the final translation and rotation error of an object from a

planned packing location Pi, assuming no collisions occurred during loading. We call this

summary error placement error εplace, and can be evaluated experimentally. The evaluation

performs 80 single item manipulations by a known transform that transforms object from

one planar orientation to another. Before the manipulation, the pointcloud of the object

is captured and the pose of the segment is estimated. After manipulation, the pointcloud

of the object is captured again, and the observation is manually aligned to the projected

object pose. εplace is taken to be the RMSE of these alignment errors. Our experiments

show that placement error is on average 1.02 cm in translation and 0.41 rad in rotation.

A summary of all error sources is given in Tab. 5.1.
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Table 5.1: Summary of empirically evaluated error sources

Error source Magnitude

εID 1.5%

εpose 0.7 cm (translation), 0.3 rad (orientation)

εgeom Estimate ≈ 0.5 mm

εplace 1.02 cm (translation), 0.41 rad (orientation)

εlift ≈ 0

εmanip ≈ 0

εbox ≈ 0

5.5.4 Simulation testing

A more extensive set of experiments were conducted in simulation, where it is more practical

to systematically introduce different magnitudes of errors and larger test sets. Varying

degrees of error from ground truth object poses and depth sensor readings are used as input

to each of our packing strategies. The simulations are run on several desktop computers

with 32GB of RAM and Intel I7 processors.

For these tests, we randomly generated 1000 sets of 10-item orders from YCB [CSB+17]

and the APC 2015 object set [Rut15]. For consistency, we use the same item sets across

the range of packing strategies. For picking, we rigidly attach objects to the robot’s gripper

with a randomly-generated pose error, using the same standard deviations as εplace, but

scaled with an error scaling factor from 0-200%. The object is dropped when the robot

reaches the desired placement pose, or a 20N force threshold is reached.

The packing success rates for strategies V1-V4 are plotted in Fig. 5.7. For V2 and V4,

a δ value of 1 cm is used. At 0% error, all experimental variations performed similarly,

just under 98% success rate, while closed-loop strategy performs slightly worse. This can

be largely attributed to the treatment of the pile as a rigid, infinite-mass object during
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replanning, which fails to capture the nuances of the pile’s stability.

When an error greater than 100% is introduced, the success rate for the baseline strategy

drops off sharply as the error increases. Meanwhile, the rate of drop off is noticeably slower

for the other 3 comparison strategies that employ robustness measures. The best performer

is V4 that uses both robust plannings as well as dynamic replanning, achieving the highest

or near highest success rate at all positioning errors introduced, and maintain a packing

success rate at 94.5% at 2.04 cm translation error and 0.82 rad in rotation error.

It should be noted that increasingδ does not always lead to better performance under

uncertainties. A δ of 2 cm was also tested in V2 and V4, achieving similar and slightly

worse performance than a δ of 2 cm. With a higher margin, more planning under margin

will fail and fall back to use a smaller margin.

5.5.5 testing on physical platform

For testing on the physical platform, we generated 100 sets of 5-item orders from our ex-

periment items. The robust planning strategies (V2 and V4) use δ =1.02 cm. Tab. 5.2

summarizes the results. Both closed-loop and robust methods (V2 and V3) perform sig-

nificantly better than the baseline, while the combined method (V4) performs best of all,

beating the baseline success rate 98% to 83%.

We also show the number of times the maximum loading force (20 N) was exceeded,

which indicates approximately how often a smash event was observed and how much damage

the object sustained during packing. The same pattern is observed, showing that both

closed-loop and robust strategies decrease the rate of smashing. The last row shows how

many times a closed-loop push maneuver was performed, showing that these are rather

rare, but are still helpful to improve success rates by a few percentage points.

We recorded object classification results, pose estimation results, as well as planned

and final placement for each experiments, which allows us to examine causes of cascading

failures more closely. In V1, 9 failures occurred with one or more items protruding outside

the box footprint, while 7 failed for objects within the container but exceeding the maximum
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Table 5.2: Success rates on the physical packing platform, 5-item orders

V1 V2 V3 V4

Success rate (%) 83 95 95 98

Max force exceeded (# per order) 2.22 1.40 1.12 0.7

Push performed (# per order) — — 0.07 0.03

height. A final case failed when a rigid object tipped over and stood up underneath the

gripper, causing the robot to report a “maximum load exceeded” fault. Some failure cases

can be traced to one predominant factor. 4 failures can be traced back to failed object

identification, which leads to wrong shape estimation of the object to pack. 3 cases can

be traced back to significant pose estimation error (e.g., rotation of 90 degrees, etc.). 1

case can be traced back to object tipping, which led to sudden force changes too rapid to

be caught by the force control loop. The remaining failure cases are caused by cascading

errors, e.g., slightly misplaced objects caused the object underneath to tip over, resulting

in the subsequent objects to be packed exceeding the container height.

In V2, 3 cases failed when one or more item protruding outside the box footprint, and

the other 2 failed during toppling events, causing items to exceed the max height. Among

the failure cases, 2 can be traced back to misidentified objects, while 1 can be traced back

to significant pose estimation error.

In V3, all 5 cases failed due to exceeding the max height. All objects protruding outside

the box footprint were corrected by pushing maneuvers. Among the failure cases, 2 can be

traced back to misidentified objects, and 2 can be traced back to significant pose estimation

error.

In V4, the 2 failure cases appear similar – the cracker box item toppled and exceeded

the max height. One case was caused by a significant pose estimation error, while in the

other, the bleach item was pushed onto the cracker box, and the impact caused it to tip
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over.
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Figure 5.1: The experimental packing setup consists of a UR5 robot equipped

with E-pick suction gripper, and overhead cameras (not pictured). Errors from pose

recognition, camera-robot calibration, box location calibration, grasp planning, the

center of mass estimation, and geometric modeling affect the overall success rate of

packing.
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Figure 5.2: Top-down diagram of the packing experiment. Objects to be packed are

arranged in the picking area, and must be packed in the container (e.g., a shipping

box). Overhead cameras (Realsense SR300 and Ensenso N35) provide color and depth

information.
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Figure 5.3: A diagram of how error sources (rectangles) contribute to unexpected

events (rounded rectangles) and ultimately to packing failure. We use εplace as a

measure for grasp pose error.
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Figure 5.4: Closing the loop around vision leads to more robust packing. (a) Offline

plan. The 2 cracker boxes are stacked first, followed by bleach and 2 soup cans. (b)

The second cracker box is shifted during packing, blocking the access for bleach.

Open-loop packing would lead to a failure. (c) The closed-loop strategy captures a

heightmap of the placed pile, detects a violation for the bleach placement, and plans

a new location. (4) Bleach is placed successfully in the empty location.

94



Figure 5.5: Conservative geometry margins reduce inadvertent collisions. (a) A

non-conservative plan (left) causes a failure during the execution of the plan (right).

Specifically, the shifted cracker box caused a failure and crash of the sugar item

planned on top of it. (b) A conservative plan with δ =1 cm margin. During execution,

all items are placed within the container without causing an inadvertent collision.

95



Figure 5.6: 15 items from YCB video object dataset are used in the packing exper-

iment
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Figure 5.7: Simulation packing success rates for 10-item orders. Pose error scaling

factor is given on the horizontal axis, and the success rate is given on the vertical

axis. The baseline (V1) success rate drops off dramatically as pose error increases,

while the robust technique (V4) is much less sensitive to error.
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Figure 5.8: Example of failed packing executions, for each experimental condition.

In the baseline (V1), all items are planned tightly, and the cracker box hit a container

wall, causing it to tilt, and for all subsequent items planned on top of it to smash. In

robust planning (V2), although margins were enforced in planning, a substantially

incorrect pose estimation caused the bleach item to stick out of the container, and

no action is taken to correct it. In closed-loop packing (V3), the first-placed cracker

box caught on the side and failed to be pushed in. This was the only case when the

push maneuver did not work in our examples. Although this caused a failed plan,

replanning prevented the subsequent items from smashing onto the cracker box. With

both closed-loop packing and robust planning (V4), a replan was triggered after the

cracker box and before the bleach item. Because the pile was treated as a fixed, rigid

object, the bleach was placed on top of the cracker box, but since it was unstable,

this caused it to tip over.
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Chapter 6

Robot Button Pressing In Human
Environments

In order to conduct many desirable functions, service robots will need to actuate buttons

and switches that are designed for humans. This paper presents the design of a robot

named SwitchIt that is small, relatively inexpensive, easily mounted on a mobile robot,

and actuates buttons reliably. Its operating characteristics were developed after conduct-

ing a systematic study of buttons and switches in human environments. From this study,

we develop a categorization of buttons based on a set of physical properties relevant for

robots to operate them. After a human calibrates and annotates buttons in the robot’s

environment using a hand-held tablet, the system automatically recognizes, pushes, and

detects the state of a variety of buttons. Empirical tests demonstrate that the system suc-

ceeds in operating 95.7% of 234 total buttons/switches in an office building and a household

environment.1

1This chapter is reproduced from Fan Wang, Gerry Chen, and Kris Hauser, “Robot Button Press-

ing in Human Environments,”, in 2018 International Conference on Robotics and Automation

(ICRA), Brisbane, Australia, 2019, May 2018, pp. 7173–7180.
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6.1 INTRODUCTION

Recent years have seen a growing interest in service robots that assist humans in their

daily lives, such as in households, offices, factories, and hospitals. Interacting with physical

switches and buttons is a pervasive part of human life, used to operate lighting, appliances,

computers, elevators, and machinery, and will therefore be an important capability for these

robots. As a result, these control devices have been designed for simple, intuitive, and re-

liable operation by humans, both in terms of their ergonomic mechanical properties and

distinctive physical appearance. There are many types of control devices in human environ-

ments, including push buttons, toggles, slides, and knobs, and in this paper these devices

will hereafter be considered synonymous to a button or a switch. Manipulating a but-

ton/switch to perform a desired effect may also be variously referred to hereafter as button

pressing, switch operation, or switching. Operating switches with a robot with human-level

ease and reliability remains a challenging task, due to the fundamentally different sensing

and actuation modalities on robots vs. humans.

This paper presents the system development and design of a compact autonomous

button operating robot called SwitchIt. It is a 3DOF device based on relatively inexpensive

sensing and actuator hardware (Fig. 6.1). A short manual calibration setup is performed

once for a given environment using a handheld tablet and fiducial markers to identify the

identity and purpose of each button. After calibration, the system recognizes and operates

a wide variety of buttons automatically. It can also use sensor feedback to detect the state

of many buttons and whether they have been successfully operated.

The system integrates three primary contributions:

1. We perform a systematic categorization of over 600 buttons and switches found in

offices and homes into 6 classes based on their physical properties required for robotic

actuation. We propose a taxonomy of buttons from a robot’s operational point of

view, and characterize several relevant physical properties of these buttons, including

travel, size, shape, and operating force.
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Figure 6.1: SwitchIt is a spherical robot equipped with an RGB-D camera. Button

panels are annotated using a QR code sticker affixed during a manual setup phase.

Shown here mounted on a tripod, the robot is preparing to press buttons on an

electronic passcode panel.

2. We develop an annotation, calibration, and perception subsystem that achieves high-

reliability button recognition, localization, and state detection. The calibration pro-

cess also handles reflective and dark surfaces.

3. We design a compliant, scalloped end effector tip that can actuate pull buttons and

turn knobs, and is robust to positioning error.

In controlled testing, our perception system localizes buttons with < 2 mm error and detects

the state of toggle switches with 100% accuracy. For typical localization errors, the scalloped
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tip design achieves 99% repeatability compared with 89% for a cylindrical tip. We also test

the system in an uncontrolled office and home environment, with 234 switches attempted

in total. The platform succeeds at operating 224 (95.7%) total switches. In particular it

was highly reliable at operating push buttons, sliders, rockers, and switches.

6.2 RELATED WORK

Computer vision techniques have long been employed for service robot to navigate and

interact with objects in human environments [MWG+10, PLS13]. Specifically, several au-

thors have addressed button identification issues that uses visual features in RGB images to

identify and locates buttons. Identifying features could either come from a priori knowledge

of the type of button [WHLC10, KAO07] or based on results of machine learning [KCRN10].

Most prior research using features based on prior knowledge is performed on elevators but-

tons [WHLC10, KCRN10, KAO07]. The advantage of this approach both seen and unseen

buttons can be detected and to some degree understood automatically. However, these

algorithms usually must rely on contextual cues such as grid layout and sequential arrange-

ment of the buttons. Machine learning strategies are also commonly used[SUB96, BKP11].

Sukhoy and Stoychev (2010) use an active machine learning strategy to identify and trigger

a button autonomously. This method was used to train a robot to identify the active part

of a door bell, and to trigger it effectively [SS10]. The auditory feedback of the feedback is

used to determine whether the button was successfully pressed.

Several authors have addressed button identification issues with autonomous recog-

nition algorithms that use visual features in RGB images to identify and locate but-

tons. Identifying features could either come from a priori knowledge of the type of but-

ton [WHLC10, KAO07] or based on the results of machine learning [KCRN10]. Most

prior research using features based on prior knowledge has been performed on elevator but-

tons [WHLC10, KCRN10, KAO07]. The advantage of this approach is that both seen and

unseen buttons can be detected and, to some degree, understood automatically. However,
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these algorithms must usually rely on contextual cues such as a grid layout and sequential

arrangement of the buttons, or be applied to only a limited class of buttons.

Our approach asks for a small amount of environment augmentation and manual la-

beling to identify each button definitively. Environment argumentation has been used in

other robotics systems as well to aid in object identifications. This removes ambiguity and

achieves much higher accuracy than automated identification while require minimal setup

time. Tools most commonly used are augmented reality tags such as RFID tags [NDRK09],

QR code [LLTK14] and other artificial marks [KOM+03, KOT+03]. Those tags usually pro-

vide information on the location of the objects, instructions on how to interact with this

specific object and a task completion criteria. We use a similar approach with QR codes,

which was also previously used to enable a mobile manipulator to plug itself in [LLTK14].

The work arguably closest to ours is Nguyen et al (2009). They uses a combination

of an augmented environment and a variety of sensors to help a robot interact with its

environment [NDRK09]. This work does allow the robot to operate certain light switches.

Force sensing and visual feedback, in the form of a change in lighting condition, is used

to detect the change in button condition. In our work,we further demonstrate that high

accuracy localization can be achieved using AR marker and RGB-D sensor alone, we also

propose parameterized motion primitives for each class of buttons as opposed to the explicit

defining instructions for each individual object to interact with.

6.3 CHARACTERIZATION OF SWITCHES IN

HUMAN ENVIRONMENTS

A button or switch changes its internal electrical connection or signal based on the force

applied to its external active mechanical component. For a human or robot operator, the

underlying circuitry of a switch can be considered a black box and can be mostly ignored.

The main focus is performing the appropriate physical action to correctly and safely trigger

the switch.
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Although some industrial settings employ switches that require significant force (or

even tools) to be applied, here we focus on switches that are designed to be operated by

one or two human fingers. These switches are designed with size, shape, material, and

mechanical resistance that are comfortable for human fingers to manipulate. Moreover,

a switch usually has a distinctive appearance that indicates its mechanical functionality

and semantic meaning, and usually provides feedback that can be promptly perceived and

interpreted.

Although switches are ergonomically designed, the movement needed to trigger a switch

safely and reliably is actually a delicate skill, acquired by humans through years of practice.

Humans use memory, visual feedback, tactile feedback, and a variety of finger and hand

contact strategies, and also progressively improve the efficiency and comfort of switching

motions. For example, to operate stiff switches, a senior citizen with reduced hand strength

will adopt finger postures that apply more leverage to stiff switches.

We collected data for over 600 switches in office and home environments to help design

our robots operational characteristics. This section describes their typical distribution and

operational characteristics.

6.3.1 Button Taxonomy

Laypeople usually address buttons by a common name that references its function, such

as light switch, toggle button, touch pad, dimmer, or keyboard. Electricians categorized

them on the basis of their electrical connection such as single-pole single-throw (SPST) or

double-pole single-throw (DPST), or by their triggering mechanism (sliders, push buttons)

or the type of the application it is used on (light switches, dimmers). For a robot, perhaps

the most useful categorization of switches is in terms of its physical triggering mechanism.

The operating mechanism of buttons and switches can be described with respect to a

normal direction facing outward from a button panel (a plane behind which the electrical

circuits are hidden). Our proposed taxonomy divides all household buttons into following

6 types based on their operating mechanism (Fig. 6.2).
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• Push-buttons operate via application of a force that moves the operating part

inward toward the panel. The movement of the button is linear.

• Toggles, such as in household light switches, generally have a rod-shaped protrusion

(known as a level) that can be rotated about an axis to toggle between 2 distinct

states. Some toggle switches have 3 or even more states. Internally, a spring and

plunger mechanism is used to aid in operation, and equilibrium is only achieved in

the extreme positions.

• Sliders require lateral movement, but the level can remain in equilibrium in any

state in its travel range. Typically a slider is operated with a linear motion and stays

in place using friction. However, some have discrete equilibrium states enforced by

internal springs.

• Rockers are pressed on one of 2 ends like a seesaw and toggle between two discrete

states. Unlike a toggle, a rocker is triggered by applying an inward force, primarily

normal to the button panel.

• Turn knobs rotate along a center axis perpendicular to the panel face to adjust

either a continuous or discrete value. Humans typically operate knobs using much of

2 or more fingers to achieve sufficient tangential friction about the axis.

• Pull buttons operate by a pulling action that moves the operating part away from

the base to open or close the contacts. To operate the button, it must be solidly

grasped either on the back or via friction on the sides.

6.3.2 Operation

Switches operate in three typical patterns: Momentary, Alternating, and Latching. In

momentary operation, the switch is in an active state only while a force is being applied,

and then once unloaded, a spring returns the switch to its original position. For alternating

operation, the switch’s state is held after it is released, and a different force must be applied
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Figure 6.2: Buttons characterized by type.
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to change state (this characterizes almost all toggles, pull buttons, and rockers). In latching

operation, a second force in the same location/direction of the initial force returns the switch

to its initial position, which is accomplished by some spring-loaded toggling mechanism.

Latching characterizes several types of push-buttons.

6.3.3 Location and Geometry

The location of the button in the environment, direction of travel, and the travel distance

affect whether the operational capabilities are within the workspace of the robot. We are

primiarily concerned with height, but to ensure accessibility of a mobile base it may also be

important for a robot designer to consider surrounding obstacles and clutter. The geometry

of the button and its relationship to surrounding buttons is also an important aspect of

finger design, since it is important to be able to press the button without accidentally

activating nearby buttons.

In our survey, the vast majority of buttons on the walls or doors have a height of

1.06–1.44m above the ground. The exception is elevator buttons, which have height range

0.88–1.72m. (The highest button is designed to be difficult to reach; it is to be used only

in case of emergency.)

6.3.4 Force

There are different types of forces associated with button pressing, but we primarily focused

on Operating Force (OF) which is the peak force needed to change the state of the button.

The typical force-stroke characteristic of a button displays no movement until a breakaway

force is reached, after which the force increases with increasing displacement until the

peak at the operating point. Afterwards, the force follows a sharp decrease, and then

gradually increases again until reaching the total travel distance [OMR17]. If tactile sensing

is available, force profiles can be very helpful for detecting the success of button pressing.

However, our system uses encoder derivatives to estimate the applied force.
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Table 6.1: Breakdown of button characteristics by type

Push Toggle Slider Rocker Turn Pull

Prevalence 66% 25% 2% 2% 2% 4%

Force (N) 0.7-12.5 2.6-6.2 0.3-0.7 2.4-9 0.7-15 3-20

Force (N) 7.15 4.61 0.5 4.5 4.2 10.2

Trav. (cm) 0.1-0.35 1-2 0.5-11 0.2-0.45 1-5.2 0.2-0.75

Trav. (cm) 0.167 1.53 4.3 0.3 2.4 0.4

Sep. (cm) 1.6 8.5 X X X X

Height (cm) 119 126 122 118 76 132

Tab. 6.1 gives results of our survey, listing range and mean value of operating force

(Force and Force, respectively). Most buttons have OF in the 4.5–8.5N. 19.7% of buttons

have OF > 8.5N and 20.8% have OF <4.5N. Only two buttons exceeded OF > 12N. For

example, an elevator emergency stop pull button required 22N to operate. However, we

find these buttons are not designed to be used on a daily basis.

It should be noted that all buttons we surveyed have been in operation for at least one

year. New buttons are usually much harder to activate and require some usage before their

internal springs soften.

6.3.5 Surface material

The body of electronic switches are usually made with metal or plastic. While highly

polished plastic and metal makes attractive appearances, reflective surfaces are challenging

for depth estimation with sensors. Our survey shows that 39% of buttons are made with

highly polished plastic or metal and 10% are made with black material.
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6.3.6 Travel distance

There are two parameters regarding travel distance: the total travel (TT) and operating

travel (OT). TT indicates distance to a hard stop, while OT indicates distance until the

switch is triggered. We are primarily interested in determining OT, although TT may be

useful for tactile feedback. Most switch specifications suggested TT-OT to be between

0.5mm-1.8mm [C&17, OMR12].

In our survey, OT varies significantly, particularly among sliders (Tab. 6.1). However,

we are most interested with the travel of push buttons, since they provide the least reliable

visual cue of button state. From this data, we determined that an open-loop position

controlled robot could press down a maximum of 5mm before linear actuator motor stop is

detected to maximize its chance of activating a button successfully, while also being unlikely

to cause damage to the button.

6.4 THE SWITCHIT PLATFORM

With the above data in mind, the SwitchIt robot accessory is designed to operate a large

number of switches and to be easily mounted on a mobile robot platform. Setting up

the system for use in a new environment requires a human to first perform a calibration

procedure, which involves affixing QR codes to button panels and annotating reference

models of the panels using a hand-held tablet. Afterward, the system will autonomously

recognize any visible panel, suggest a reference position for the robot’s base, and once in

position, press a requested button or sequence of buttons.

6.4.1 Hardware

The robot arm used in our system is a custom 3DOF spherical robot that can pan, tilt

and extend. The pan-tilt DOFs are ScorpionX MX-64 Robot Turret kit item number KIT-

SXT-MX64 and extension is provided with a 50mm Firgelli Linear actuator. We have tested

the physical capability of the arm in its workspace and measured a output force exerted
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by the tip in a range from 6N to 18N. Although the robot is generally weaker and more

susceptible to flexing the further it moves away from the center of the workspace, it should

nonetheless be strong enough to trigger most buttons, which have operating force < 12N.

The positioning accuracy of the robot after calibration is measured to be sub-millimeter on

average, and less than 3mm maximum.

For sensing we use a single Intel RealSense F200 RGB-D camera to do colour and

depth capture. These cameras are inexpensive (purchase price $129), have a depth range

of 20–120 cm, and work optimally in well-lit, indoor environments and diffuse objects.

Both the robot and camera are mounted on a fixed base using Plexiglass and a camera

mount. We assume that the mount is attached to a mobile robot or an arm that has

sufficient rigidity to keep the unit roughly in place while it presses buttons.

6.4.2 Scallop fingertip

We considered using a cylindrical rubber-coated tip, with similar shape and size to a human-

finger. However, a novel scallop design proved to manipulate buttons much more reliably.

The principle of the design is to increase tolerance against positioning error, and to enable

motion primitives of pulling and turning which are usually difficult to achieve with a 3-DOF

robot.

The design contains four rigid scallops protruding from its lateral edges (Fig. 6.3). For

switches with activating rods, a scalloped channel guides motion towards the center-line,

which corrects for positioning error and increases effective lateral friction. An underlying

skeleton is 3D printed from rigid plastic, and this is coated with a 1-3mm thick PMC-

121/30 rubber compound. The rubber coating provides compliance and large friction that

helps correct for positioning errors and reduce slippage. The coating at the forward tip of

the finger is curved with a dimension and shape similar to a human’s index finger. The

scallop protrusions are also coated with longer rubber “skirts” to establish larger contact

area when turning knobs. Finally, the rigid skeleton is also designed with a narrow “hook”

located on one side of the finger, which is designed for holding onto pull buttons.
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Figure 6.3: Cylindrical and scallop tip designs: (a) Scallop tip skeleton, (b) Scallop

tip with coating, (c) Side view of tips. From top to bottom: scallop skeleton, cylin-

drical, scallop coated with rubber, (d) Top view of tips. From top to bottom: scallop

skeleton, cylindrical, scallop coated with rubber
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6.4.3 Environmental annotation and calibration

To apply the method to a new environment, a manual setup procedure must be performed

to populate a database of known button panels. The process is relatively fast and the

environment is minimally altered. For example, to complete annotation, calibration, and

information entry for a medical device panel with 10 buttons takes less than 4 minutes

(Fig. 6.4). The procedure consists of the following steps:

• The user affixes a QR code on or near the button panel.

• Using a tablet with attached RGB-D camera, the user takes a picture of the panel

and provides an identifier for the panel.

• Guided by the annotation GUI, the user adds each button by name, type, and des-

ignates areas of interest on the picture.

• The panel identifier, QR code, RGB-D information, button names, type, location,

size, and areas of interest are saved to a database.

It should be noted that dark or highly reflective panels and buttons cause problems with

depth estimation, which could lead to erroneous 3D button location estimates. To accom-

modate these types of materials, the user should temporarily apply matte tape (masking

or painter’s tape) to the button panel when capturing the reference RGB-D image. After

calibration the tape may be removed.

One omission of the current procedure is that we do not store a 3D map of button

panel locations. As a result, to use our system, a mobile base must be able to first position

the camera to observe the panel’s QR code. Future iterations of our system might record

panel location, and incorporate simultaneous localization and mapping (SLAM) software

to guide a mobile base to a desired panel.
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Figure 6.4: Steps of the panel calibration process: (a) Taking a picture of the panel

panel with RGB-D camera, (b) Tap on a button to zoom in. Already calibrated

buttons will be marked, (c) Draw rectangles in the area of interest as guided for each

type of buttons, (d) Zoomed in button details make it easier for operators to calibrate

with higher accuracy
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Figure 6.5: Point cloud and RGB view showing localization of button surface in

real-time. Computed locations of the buttons are drawn as red rectangles.

6.4.4 Button Panel Recognition and Localization

Recognition and localization consists of an imprecise QR code localization followed by a

more accurate point cloud registration via Iterative Closest Points (ICP) algorithm [BM92,

CM92] . When a QR code is detected, the panel reference RGB-D image and all button

annotations become available. A first guess is obtained from the QR code, which gives an

estimated affine transformation between the reference image coordinates and the current

camera coordinates. Since QR codes are relatively small, this estimate is often inaccurate.

To improve accuracy, we then apply ICP to match the point cloud corresponding to the

reference RGB-D image to the currently observed point cloud. The QR code localization

gives a reasonable initial guess for this optimization. It should be noted when depth data

is missing or corrupted by dark or highly reflective surfaces, ICP is not as effective, and

localization relies more on the QR code and surrounding non-reflective surfaces.

Although RGB-D camera is relatively cheap, one significant drawback of this kind

of camera is that they are unable to do depth measurements on objects with black or

highly reflective surface. Therefore people turn to lasers and other more expensive sensing

equipments for robust sensing. Buttons and buttons panels are often painted in black or

are made in very shiny material such as stainless steel. However, since we are only tracking

the QR locations in real time and the current position of the buttons are calculated from
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Figure 6.6: Calibration areas by button type: (a) Push button, (b) Toggle, (c)

Rocker, (d) Slider, (e) Turn knob, (f) Pull button.

the location in the database transformed by the affine transformation, the program is not

actually detecting the real time position of the buttons with the RGB-D camera so that it

is no issue that the RGB-D is incapable of doing the depth measurement on those buttons.

However, if the entire button panel and it’s surroundings are invisible to the depth camera,

our program don’t have the enough point cloud data to perform ICP and need to rely on

the transformation provided by the QR code only.

6.4.5 Button State Recognition

Many buttons provide tactile and/or auditory feedback primarily intended for humans,

which can also be used by the robot to determine whether it has successfully been switched.

For robot not equipped with microphone or force sensor, it can be quite difficult to deter-

mine the state of the button and to confirm the completion of the task. Some of the previous
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research uses heuristics such dimming in the lighting condition to determine if light switch

has been successfully switched off [NDRK09]. However, those heuristics are not always

available or can be relied on.

SwitchIt uses RGB-D information to detect the state of toggle, slider, and rocker

switches, as well as push-buttons with back-lit LEDs. The shape of different switch posi-

tions can be quite distinctive. The lever rod of a toggle switch rests on 2 opposite sides

at different states, and rocker surfaces tilt up at different sides. Take a light switch as an

example. If the switch is in the up position, the average distance from the button surface

to the underlying plane will be greater on the upper side of the button.

Using a region of interest from the calibration data, our method calculates the average

displacement from the panel plane in both halves of the switch, and detects the switch

position by the maximum displacement. We filter out noise at 5 cm distance from the

panel since this is most likely caused by obstacles in front of the camera, e.g., the robot

itself. We use the same method for detecting states of rocker buttons and sliders.

State detection is challenging for push-buttons, since many do not change in appearance

and shape after activation. Some push buttons do provide visual cues, for example, an LED

back-light. We therefore focused on detecting these differences in the RGB image. However,

we find that very few push buttons provide visual cues, and the interpretation is not always

consistent (e.g. a backlight turns on vs the button itself lights up).

6.4.6 Control

The controller of the robot is initiated when the robot is in reach of the button panel, and

a button pressing sequence has been specified. The robot performs one or more guarded

end effector moves in Cartesian space, determined by the button type and areas of interest

collected during calibration. The pushing strategy for each type of button is as follows:

• Push: Approach the center of the marked zone and push down. Pushing stops if one

of the following conditions have been met: 1) the linear actuator has fully extended
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by 5mm, or 2) encoder readings indicate that the linear actuator has been stopped

for 0.2s.

• Toggle: Linearly interpolate between center of 2 zones, in the direction needed to

switch off / on.

• Rocker: Linearly interpolate from zones 1 to 2 or from 3 to 4, depending on the

operational state. (We found this diagonal movement to slip less frequently than

pushing straight downward.)

• Slider: Same as the toggle, except that the user / supervisor can specify a fractional

travel amount.

• Turn Knob: Button center locations, button radius, and knob depth are determined

from the marked region. During actuation, the tip touches the side of the knob and

moves in a circular motion in the direction specified.

• Pull: First, approach the side of the button with the “hook” pointing inward and

then move inward by 5mm. Interpolate toward a point 5mm in front of the pull

button surface center, or until the encoder reading indicates that the linear actuator

motor has been stopped for 0.2s.

6.5 EXPERIMENTS

We have done an full accuracy measurement of our system and separate localization errors

with and without ICP. We also test our system with test panels that contains buttons of

various types, shapes and stiffness, and finally an exhaustive real-world test in office and

home environments.

6.5.1 Calibration

The robot and camera are automatically calibrated using a colored cross shape fiducial

fixed to the end of the robot with a pin. Colored blob detection and averaging produces a
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relatively accurate measurement of the 3D tip position in the camera frame. The robot is

driven to 30 random locations within its workspace and its joint coordinates are recorded.

When the four circles are visible in both color and depth images and agree on the tip

position within 5 mm, we consider the tip to be accurately measured. A least-squares

transformation matrix between joint coordinates and sensed positions is then fit to the

data. After calibration we find the mean average error in the range of 0.8mm-1mm with

the maximum error less than 3mm.

6.5.2 Measurement of system accuracy

We built an apparatus to measure the cumulative positioning error of the system including

human set-up error, calibration error, localization error, and hardware inaccuracies. We

built a button panel with a “virtual button” in the center, whose coordinates are at the

center of two colored diagonal visual features (Fig. 6.7). We conducted 500 test pushes

using panel localization to determine the button location. Between each push we changed

the position and orientation of the panel, with the entire panel oriented on each of its

four sides and with yaw altered to up to 45◦. The tip position was measured using the

calibration cross marker, and “true” button center position was measured using the larger

cross features. Results show the average euclidean distance from the tip center to the sensed

button center is 1.9mm, with an outlier of 8.39mm (Fig. 6.8). This outlier was likely caused

by a hardware fault on the linear actuator.

To isolate performance of our panel localization system we performed 500 localization

readings on a different test panel that has several buttons (slider, rocker, push button, and

switch) and a color-based fiducial on the push button. We compare the estimated button

position from panel localization against the “ground truth” location from color tracking.

Testing repeatability for a static panel (i.e., the effect of camera noise) gives a maximum

euclidean distance error of 2.56mm using only QR localization, which is reduced to 0.5mm

with ICP. Repeating this experiment while shifting and rotating the panel between each

reading, localization with QR code only had a maximum error 2.76mm, reduced to 1.3mm
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Figure 6.7: The above apparatus is used for testing the accuracy of the system: (a)

Robot and camera are calibrated using a cross marker, (b) Center button is located

at the intersection of opposing diagonal circles, (c) Center plate is removed during

the test to not interfere with tip motion.

with ICP.

6.5.3 Test panel experiments

As a controlled test of our platform’s reliability in operating switches, we built 2 test panels,

one with toggle switches and another with push buttons. The push button panel consists

of 5mm radius buttons made with polished plastic. Each pair of buttons is separated by

at least 2mm. The toggle test panel holds 5 toggles of different size, shape, and operating

force ranging from 2.5N to 8.2N. All buttons are located within a 12cm by 10cm rectangle

centered on a 30cm by 23cm flat panel, placed approximately 21cm away from the robot’s

base.

In the switch test, the robot localizes and switches on the 5 switches in sequence and

then reports the perceived state of the switches. Then, it switches them off and again

reports their perceived state. In case of a failure, we manually flip the switch to the desired

state for the next sequence. For the pushbutton test, robot localizes and pushes 10 buttons

in sequence. In each test, the robot runs 10 sequences and attempts 100 actuations in

total. The panel is illuminated with indoor office lighting. To judge the impact of different
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Figure 6.8: Histogram of system errors.

Figure 6.9: Error distribution in XY.
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Table 6.2: Test Panel Experiments

Button Type Toggle Toggle Toggle Toggle Push Push Push Push

Tip Cylinder Scallop Cylinder Scallop Cylinder Scallop Cylinder Scallop

ICP Off Off On On Off Off On On

Success rate 79% 96% 84% 99% 98% 99% 98% 100%

State detection 100% 100% 100% 100% n/a n/a n/a n/a

Duration (min) 20 20 22 22 13 13 17 16

Time / push (s) 12 12 13.2 13.2 7.8 7.8 10.2 9.6

components on performance, we performed these tests with the two tips (cylindrical and

scallop) and with and without ICP activated.

Tab. 6.2 shows that although the cylindrical tip performed well at button pushing, it

failed in roughly one fifth of the switch attempts. We observed that errors occurred due to

slippage or flexing of the robot structure. The scallop tip eliminated slippage, although it

still failed 4 times when activating the lower left button, which had a relatively high 8.2N

OF. The failure case was further reduced to only 1 when ICP was used in localization. The

scallop tip design still has a high success rate on push buttons, even though it has a larger

cross section than the small buttons we tested on. This is due to the curved tip that can

direct force within a small area.

6.5.4 Experiment pressing in an office building and home

We tested our system on all accessible buttons on doors/walls and large electrical appliances

in a 4-story office building and a 2 story residential town house. We mounted our robot on

an adjustable-height stand with lockable wheels and pushed the robot along the corridor

while testing on all buttons that are accessible and safe to test on.
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Figure 6.10: A selection of button panels that SwitchIt succeeded in activating:

(a) Door passcode, (b) Disabled door exit, (c) Thermostat buttons, (d) Switch with

dimmer, (e) Office stereo control, (f) Security door entrance, (g) Electronic keypad,

(h) Light switch

We have tested on 98 different button panels that contain a total of 379 individual

buttons. The test set covers 39 distinct classes of panels and all 6 button types. We tested

all distinct button on every panel, but when panels contain many identical buttons, we did

not test every button. Specifically, if a panel contains exact duplicates of one button (such

as a numeric keypad), we only tested 2 or 3 of them at extreme positions. In total, we

asked the robot to operate 234 buttons.

Our robot succeeded in activating 224 of 234 buttons at the first attempt. We note

that several of these buttons were quite challenging (Fig. 6.10). Successes include office

passcode entry with small, stiff, and slippery metallic buttons; small and stiff rockers; turn

knobs on a classroom stereo control; and non-conventional light switches that are activated

from the side.
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Figure 6.11: Four button types that SwitchIt failed to activate: (a) An old-style

timer, (2) An elevator pull button, (3) A washer control button, (4) A turn knob on

oven.

6.5.5 Test panel experiments

Out of the 10 failures, 3 switches are within the capability of the device, but failed due

to various positioning errors. The other 7 were of 4 button designs our system currently

cannot actuate (Fig. 6.11). They include “push to stop, pull to run” emergency stop button

with a shallow smooth indentation for human finger to pinch. The hook in our finger cannot

establish a solid hold onto this indentation. The other 3 are variations of turn knobs such

as an old-style timer that requires more than 20N to turn, 3 oven temperature knobs that

must pushed in while turning, and 2 washing machine controls that are “pull to start, push

to stop, and turn to select.” More work is needed to develop actuation strategies for these

atypical button types.
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Chapter 7

Future Work

An automated robot warehouse brings possible benefits such as increased up-time, higher

total throughput, and lower accident rates. In particular, autonomous dense packing of ar-

bitary objects improves the storage capacity, decreases the delivery cost and saves packing

materials. This thesis proposes a formulation of the packing problem that is tailored to the

automated warehousing domain. Besides minimizing waste space inside a container, the

problem requires stability of the object pile during packing and the feasibility of the robot

motion executing the placement plans. To address this problem, a set of stability and robot

packability constraints are formulated, and a constructive packing pipeline is proposed to

to pack geometrically complex, non-convex objects while satisfying these constraints. To

evaluate the proposed planner under real-world uncertainties such as vision, grasping and

modeling errors, a systematic evaluation on a state-of-the-art physical packing testbed is

performed to study the sources of error and models their magnitude. Exhaustive exper-

iments are conducted in Monte Carlo simulation and on the physical testbed to examine

the feasibility of the packing placements, under open-loop baseline condition as well as two

strategies for improving the robustness of robotic packing. Empirical results demonstrates

the proposed planner produces stable and high-quality packing plans compared with other

3D packing methods, and success rate of up to 98% can be achieved on a physical robot

when using robustness measures despite cascading real-world uncertainties.

In Chapter 2, a constructive pipeline is developed that can pack geometrically complex,

non-convex objects with stability while satisfying robot constraints. A new Heightmap-

Minimization heuristic is proposed as a positioning heuristic for efficient 3D irregular shape

packing. Simulation results on exhaustive datasets demonstrate the effectiveness of the

pipeline and the advantage of the new heuristic in finding stable and robot-packable plans.

Robot-packable plans are shown to be far more successful in open-loop execution than
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non-overlap methods used in prior work.

In chapter 3, two novel packing problems with nondeterministic item ordering are for-

mulated. We presented practical solvers that handle irregular 3D shapes and item sets

up to size 10. This work opens up several interesting theoretical and practical questions,

such as the minimal number of plans needed to guarantee NDOP coverage, whether com-

plete QOP algorithms exist for rectilinear items, whether efficiency gains are possible with

multiple identical items, and whether restrictions on item shape can overcome exponential

worst-case complexity.

In chapter 4, we started implementation the offline algorithm onto a physical system.

Since the proposed algorithm assumes known 3D models of objects for planning and colli-

sion detection, and a highly precise model lead to better planning. We developed an in-hand

object scanning pipeline that is easy to use and obtain results swiftly. Experiments demon-

strate that the novel BackFlow video segmentation technique leads to improved tracking

accuracy for fast changing objects when compared to other state-of-the-art methods, which

leads to better reconstruction of 3D models. The only equipment needed by the method

is an RGB-D camera and standard PC. Moreover, the software is easy to use for novices,

taking approximately 2 minutes of manual input per object.

In chapter 5, we analyzed multiple sources of error in an integrated, automatic robotic

packing system, and presented two strategies for overcoming these errors to increase packing

success rates. In the robust planning strategy, geometric collision margins were added to

avoid inadvertent contact. In the closed-loop strategy, vision was used to sense the state

of the object pile, and to push items poking out of the container, and to replan if items

slipped from their planned positions. The combination of both strategies led to higher

success rates than either alone, and much higher success than open-loop planning. In all

strategies, force feedback was also important to ensure items were successfully grasped and

to avoid crushing items.

Future work could address non-rigid objects or uncertainty in 3D scanned models. We

may also be able to increase the execution success rate by implementing a more conservative
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stability check, or to perform a more sophisticated closed-loop execution. One method may

be to check multiple perturbed gravity directions for feasibility [OR06], but it is still a

challenge to ensure robustness with varying centers of mass and surface friction. We are also

interested in improving replanning stability tests by identifying the shifted configuration of

the object pile rather than treating it as a fixed, infinite-mass object. Finally, we are very

interested in the use of manipulation to re-position items after they have been placed, such

as compressing items toward a corner to make more space, or to repack items that have

fallen.
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