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I. INTRODUCTION

Soft robotics is a highly active field of research in robotics
due to their potential to comply safely to disturbances and
conform shapes to objects and obstacles, in analogy to
biological systems like elephant trunks and octopus arms [6].
Soft robot arms are especially appealing candidates for
underwater operations thanks to their actuation mechanisms.
However, modeling and controlling soft arms to achieve
precision tasks has remained a significant challenge. Because
soft actuators are nonlinear, have infinite degrees of freedom,
and exhibit complex dynamic behavior such as oscillation
and hysteresis, analytical models can be incomplete or too
computationally intensive for real time operations. Machine
learning approaches, such as neural networks, have been
widely explored to model the soft robot kinematics and
dynamics from observations [7], [1]. Such models can be
trained using supervised learning or reinforcement learning
(RL) [8], but achieving good generalization across tasks
remains a challenge.

In the context of an underwater soft robotic arm, this paper
demonstrates that learned model predictive control (MPC)
approaches, which model the dynamics of the system, are
able to achieve high positioning accuracy. Learned MPC has
indeed been applied to soft robot control in prior work [5],
but we address the problem that MPC is highly sensitive
to the hyperparameters of the learned model and optimizer,
and tuning them manually is a tedious process. In this work,
we adopt the AutoMPC [2] approach to automatically tune
the MPC controller from an offline dataset, and extend it to
handle multi-task tuning. On a two-module, hydraulically-
actuated underwater soft robot, we compare this method to a
learned inverse kinematics model that predicts the actuation
pressures needed to achieve a static configuration. Although
both controllers were trained on the same dataset, AutoMPC
achieved 75% improvement in targeting accuracy.

II. UNDERWATER SOFT ROBOTIC ARM

Our experimental platform is a two-module planar under-
water soft robotic arm, driven by four hydraulic actuators:
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two for each module. A pump in the same water tank
as the robot is the pressure source for the actuators. The
centerline of the robot is marked with color-based fiducials
for computer vision tracking. The robot is submerged in
approximately 3.5 cm of water so that the computer vision
markers remain above the water level. A calibrated camera
setup tracks the markers to provide (x,y) coordinates of the
center of each section of the arm. Each hydraulic actuator
is equipped with two solenoid valves and a pressure sensor.
The solenoid valves take a binary control signal and allow
water to flow in or out of the actuator. Thus, the 26-D robot’s
state x = (xmarker, xpressure) consists of eleven Cartesian
marker locations and four analog pressure readings, and its
control u consists of 8 binary solenoid inputs. The red marker
at the base of the robot is designated as the origin and is
seen at the bottom of Fig. 1(a). The end effector point xee

is represented by the marker at the top of the robot.

III. OPEN-LOOP LEARNED INVERSE KINEMATICS
CONTROLLER

As a performance benchmark, we implemented an open
loop controller which uses a learned inverse kinematics
model to predict the actuator pressure values needed to
produce a given end effector position: xP = f̂(xee). The
model is a multilayer deep neural network with inputs
corresponding to the (x, y) coordinates of the desired end
effector marker location and outputs corresponding to the
four pressure values for each actuator. Training data was
collected by running the robot through a series of planned
and random trajectories. The coverage of the 11,358 data
samples is shown in Fig. 1(b). The control algorithm first
generates 4 desired pressure values xd

P from a given target
location using the learned model, and then drives each actu-
ator to the desired pressure simultaneously. Once a pressure
target it reached, both valves are closed and the actuator is
locked. Although we use feedback to correctly pressurize the
actuators, the controller is open loop with regard to xee.

IV. AUTOMPC CONTROLLER

Data-driven model predictive control (MPC) consists of
a learned dynamics model provided as input to a finite-
horizon trajectory optimizer. A benefit of MPC over RL-
based methods is that it can be easily customized to new tasks
by changing the objective function used in the optimizer. The
dynamics can also be learned from data collected offline
in a controlled and safe fashion, rather than allowing the
robot to generate uncontrolled inputs that may risk damaging
the robot. However, closed-loop performance of MPC is




