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Abstract

Few-shot incremental segmentation is the task of updat-
ing a segmentation model, as novel classes are introduced
online over time with a small number of training images. Al-
though incremental segmentation methods exist in the liter-
ature, they tend to fall short in the few-shot regime and when
given partially-annotated training images, where only the
novel class is segmented. This paper proposes a data syn-
thesizer, Guided copy-And-Paste Synthesis (GAPS), that im-
proves the performance of few-shot incremental segmenta-
tion in a model-agnostic fashion. Despite the great success
of copy-paste synthesis in conventional offline visual recog-
nition, we demonstrate substantially degraded performance
of its naı̈ve extension in our online scenario, due to newly
encountered challenges. To this end, GAPS (i) addresses
the partial-annotation problem by leveraging copy-paste to
generate fully-labeled data for training, (ii) helps augment
the few images of novel objects by introducing a guided
sampling process, and (iii) mitigates catastrophic forget-
ting by employing a diverse memory-replay buffer. Com-
pared to existing state-of-the-art methods, GAPS dramat-
ically boosts the novel IoU of baseline methods on estab-
lished few-shot incremental segmentation benchmarks by up
to 80%. More notably, GAPS maintains good performance
in even more impoverished annotation settings, where only
single instances of novel objects are annotated.

1. Introduction
Incremental segmentation is an important capability for

open-world AI systems. For example, consider a house-
keeping robot that has been trained to segment common
household objects, but once deployed in a user’s home it
encounters a previously unseen type of furniture. For such
practical applications, incremental segmentation would be
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capable of expanding the set of recognized classes to con-
tain the new object. There are a few desired properties of
incremental segmentation algorithms to operate under these
scenarios. First of all, the algorithm should be equipped
with few-shot learning capability, which means that the
algorithm can benefit from as few as one image provided by
a user rather than requiring hundreds of images annotated
offline by professional annotators. Second, providing full
segmentation annotation of an image is time-consuming. To
avoid causing substantial burdens for untrained users, the
algorithm needs to be trainable with partially-annotated
images where only novel classes are annotated.

A few attempts have been made by recent works [3, 5,
7, 28, 30] on non-few-shot incremental segmentation to in-
vestigate learning with partially-annotated images, which is
termed semantic background shift [3]. Background shift
describes a challenge unique where classes that are not in
the current learning step are assigned ‘background’ labels,
which prohibits direct end-to-end training. Recent work
uses either modified loss [3,30] or pseudo-labeling [5,7,28]
as proxies to train on partially-annotated images. However,
although these proxying methods demonstrate good perfor-
mance under the non-few-shot settings, they rely on rich an-
notations and fall short when only a limited amount of data
is presented to the model, due to a lack of diversity of data.
An even more restrictive setting occurs when users label
only a single instance of the novel class, where these meth-
ods fall short, due to the training containing non-annotated
instances of the novel class.

To address the aforementioned challenges, we pro-
pose GAPS (Guided copy-And-Paste Synthesis), which
improves the training of incremental segmentation mod-
els by synthesizing fully-annotated images from partially-
annotated examples. It is model-agnostic, and can be in-
serted as a plug-and-play module into different incremental
learning algorithms, e.g., standard fine-tuning or PIFS [4].
Copy-paste generates diverse training data to boost perfor-
mance under few-shot settings, enables the model to learn
with partially-annotated images with as few as one anno-
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Figure 1. Our proposed method utilizes guided copy-paste augmentation to synthesize diverse training data, using as few as one single
novel instance for training. For example, the model encounters an image of many motorcycles, which is novel to the model. As a result,
the model incorrectly assigns learned bicycle labels to these pixels and therefore needs to be updated. Our proposed method can adapt
to the novel motorcycle class with an annotation of a single motorcycle, which can be efficiently annotated; whereas previous work [3, 4]
require time-consuming annotation of all instances of motorcycles or even the entire image. Best view in color.

tated novel instance out of many novel instances in an im-
age (e.g., as illustrated at the lower left part of Fig. 1), which
is a stricter setting than semantic background shift [3].

To the best of our knowledge, we are the first to introduce
copy-paste as a synthesis technique to create a diverse data
source for few-shot incremental segmentation. Although
copy-paste [12] has been shown to be an effective data aug-
mentation technique for offline visual recognition tasks, we
identify new key technical challenges to adapting it to few-
shot incremental settings. First, how should the synthesizer
pick representative samples from the base dataset to con-
struct a diverse pool of fully-annotated base scenes? Sec-
ond, given the constructed pool of fully-annotated images,
how should it select the most suitable base images to be
pasted on? Third, after an informative image is selected,
from what distribution should it sample current and previ-
ously learned novel objects to balance sample frequency
and avoid over-sampling or under-sampling? Our GAPS
method differs from a naı̈ve (e.g., uniform random sam-
pling) copy-paste process by a guided strategy that con-
siders diversity of the memory-replay buffer, imbalanced
class frequencies between base classes and novel classes,
and contextual similarity of images.

In summary, our contributions are as follow:

1. We are the first to introduce copy-paste as a synthesis
technique to address partially-labeled images for incre-
mental segmentation.

2. To address the gaps between copy-paste under the of-
fline setting as an augmentation technique and under
the online setting as a synthesis technique, we design
a guided copy-paste process that improves the distri-
bution of synthesized images by enforcing diversity of
the memory-replay buffer, exploiting contextual infor-
mation, and balancing class frequencies.

3. The proposed GAPS technique consistently boosts the
performance of a variety of incremental learning algo-
rithms from simple fine-tuning to sophisticated state-
of-the-arts under the few-shot setting. Furthermore,
we demonstrate the strength of GAPS to cope with a
more challenging task setting where only one instance
out of many novel instances in an image is annotated,
which highlights copy-paste as a better alternative to
pseudo-labeling or modified loss for practical incre-
mental segmentation applications.

2. Related Work
Incremental Learning for Semantic Segmentation. It

is known that many learning-based models suffer from
catastrophic forgetting [19], a phoenomenon that causes
models to perform significantly worse on old tasks when
they are fine-tuned to adapt to new tasks. Incremental learn-
ing studies how to enable models to adapt to new classes
while mitigating catastrophic forgetting without accessing



the old dataset or full-scale re-training. This problem has
been studied extensively in image classification [1, 2, 16–
18, 22, 29]; whilst relatively less work have been done to
study incremental learning under the task setting of seman-
tic segmentation [3, 5, 7, 20, 30]. Noticeably, a few at-
tempts have been made by recent work to address the se-
mantic background shift problem proposed by [3] via either
pseudo-labeling [5,7,28] or modified loss [3,30] to train on
partially-annotated images of novel classes. However, ex-
isting work relies on rich annotations and tends to fail when
only a limited amount of data is available. In contrast, our
work enables incremental segmentation learning with few
data via a guided copy-paste process, which demonstrates
promising performance under the few-shot and more im-
poverished single-instance setting. Furthermore, GAPS is a
model-agnostic data pre-processor, which is orthogonal to
incremental learning techniques such as regularization [16].

Few-Shot Semantic Segmentation. Few-shot semantic
segmentation methods predict segmentation masks of novel
classes using only a few training examples of the novel
class. Many meta-learning-based methods [23, 26, 27, 31]
and even specialized datasets [15] have been proposed
to address such a problem. However, few-shot seman-
tic segmentation methods produce novel-class-only binary
foreground-background segmentation. In comparison, our
proposed method works in a more challenging and realistic
setting where both base classes and novel classes need to be
segmented.

Few-Shot Incremental Segmentation. While there
are many works in few-shot incremental image classifica-
tion [6,24], relatively fewer works have been done to inves-
tigate few-shot incremental segmentation [4, 11, 25]. [25]
designs a meta-learning-based classifier that adjusts learned
prototypes by modeling interaction between base classes
and incoming novel class. Unlike [25], which only per-
forms a single update of weights in the classifier, PIFS [4]
apply regularization techniques to allow fine-tuning of the
entire network, achieving state-of-the-art result in few-shot
incremental semantic segmentation. However, PIFS [4] is
fine-tuned on only a small number of samples, which leads
to sub-optimal performance due to overfitting. In addition,
PIFS requires fully-annotated images as input, which hin-
ders its potential for practical applications.

Copy-Paste Augmentation. Copy-and-paste is an aug-
mentation technique that copies a subset of objects from one
image and pastes onto the other image using their segmenta-
tion masks. Many works [8, 9, 12] have been done to inves-
tigate how copy-and-paste augmentation can help with var-
ious visual tasks. Dvornik et al. apply copy-paste augmen-
tation in object detection by designing a neural network to
consider context and guide copy-paste. However, the con-
text guidance method proposed by Dvornik et al. can not
be trivially applied to our application since it requires abun-

dant fully-annotated training data. More recently, Ghiasi et
al. conduct extensive experiments to demonstrate the effec-
tiveness of simple copy-paste in the instance segmentation
problem. We extend the augmentation strategy from [12]
and construct an intuitive baseline called Naı̈ve copy-Paste
Synthesis (NPS) to adapt it to our online task setting. How-
ever, as we will demonstrate in the ablation study, such
naı̈ve adaptation gives unsatisfactory performance in our
task setting because of gaps between the static offline learn-
ing and continual online learning. In our work, we propose
a series of techniques to guide the copy-paste synthesizer to
address these gaps, whose effectiveness is evident from the
significant improvement from NPS.

3. Method
Problem Setup. Let X ⊂ RH×W×3 be a set of RGB

images with size H ×W , C ⊂ N be a set of category la-
bels, and YC ⊂ RH×W×|C| be a set of label masks (i.e.,
per-pixel category labels in C). In semantic segmentation,
we aim to learn a model ϕ that maps an image x ∈ X
to a segmentation mask y ∈ YC . Different from standard
semantic segmentation, in few-shot incremental segmenta-
tion, C is expanded over time through two stages. During
the base learning stage, the model is provided with a base
dataset D0 = {(xi, yi)|xi ∈ X , yi ∈ YC0}, where C0 is
a set of classes in the base dataset. D0 generally contains
many fully-annotated image-mask pairs and is used to train
the model ϕ0 : X → YC0 from scratch.

During the incremental learning stage, a sequence of
tasks {D1, D2, . . . } with novel categories is presented to
the model, where Dj = {(xi, yi)|xi ∈ X , yi ∈ YCj} and
Cj is a set of classes for task Dj . In few-shot learning, the
size of the training sets for the novel tasks is small, i.e.,
|Dj | ≪ |D0|. After adapting to task Dj , the model is up-
dated as ϕj : X → Y∪i=0,...,jCi . The goal of incremen-
tal learning is to optimize the model performance jointly
on both previous tasks and the current task. To enforce
the partially-annotated image setting, we follow Cermelli
et al. and assume that only novel classes are annotated, i.e.,
Ci ∩ Cj = ∅ for all i ̸= j.

Method overview. Fig. 2 illustrates our proposed
Guided copy-Paste Synthesis (GAPS) framework for few-
shot incremental segmentation. It is a generic and model-
agnostic data synthesis framework that generates fully-
labeled scenes from partially-annotated images of novel
objects as a preprocessor to the underlying segmentation
model. After the standard base learning stage with base
dataset D0, we build a memory-replay buffer D̂0 using an
diversity-guided exemplar selection strategy (Section 3.2).
During the incremental learning stage, fully-labeled sam-
ples are synthesized by copying from the masked novel ob-
jects in D1, . . . , Dj and pasting onto base exemplars from
the replay buffer D̂0. The strategy by which we choose
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Figure 2. Overview of GAPS. During the incremental learning stage, GAPS takes in as few as one annotated instance of a single image.
It is more probable for GAPS to select a scene contextually similar to the provided image from memory-replay buffer D̂0. The image is
then probabilistically pasted to generate synthetic fully-labeled scenes. Note that GAPS is model-agnostic, and here we use PIFS [4] as an
example for the underlying segmentation model to illustrate how GAPS is applied as a pre-processor. Best seen in color.

base exemplars and novel segments is context-guided (Sec-
tion 3.3) and class-frequency-guided (Section 3.4).

3.1. Few-Shot Incremental Segmentation Model

In principle, GAPS is model-agnostic, which means that
it can work with many incremental segmentation models as
a diverse data source to improve their performance. Here
we adopt PIFS [4] as the main baseline underlying segmen-
tation model for its state-of-the-art performance on few-shot
incremental semantic segmentation and support for end-to-
end training. The PIFS segmentation model ϕ is composed
of a convolution-based feature extractor f and a per-pixel
classification layer g using prototypical representation – g
is configured to classify the pixels into n classes, so it is
parameterized with prototypes W = [w1, w2, . . . , wn]. In-
tuitively, f maps every pixel in an input image onto the unit
hyper-sphere in a high-dimensional representation space.
g then generates probability prediction by comparing co-
sine similarity of feature vectors with learned class proto-
types wi in the representation space and applying softmax
of the resulting similarities. Following PIFS, given a previ-
ously unseen class n+ 1 from task Dn+1 = {(xi, yi)|xi ∈
X , yi ∈ YCn+1}, instead of randomly initializing the proto-
type wn+1, we apply the MAP (Maksed Average Pooling)
function [4, 27] to estimate the prototype,

wn+1 =
1

|Dn+1|
MAP(xi, yi, n+ 1), i ∈ Dn+1 (1)

=
1

|Dn+1|
∑

(xi,yi)∈Dn+1

Mn+1(yi, j)
fj
n(xi)

||fj
n(xi)||

Mn+1(yi, j)
(2)

where Mn+1(yi, j) is a binary function that returns 1 if
the j-th pixel in mask yi is class n + 1, and 0 otherwise.
f j
n(xi) denotes the feature vector at the j-th pixel of fn(xi).

In addition, we want to note that our re-implementation
of PIFS [4] uses L2 regularization rather than the prototype
distillation loss proposed by Cermelli et al. We found ex-
perimentally that when a diverse data source is used (i.e.,
our proposed GAPS), L2 regularization works better.

To be more precise, we construct a penalization term
LREG to regularize the output before the classifier. For in-
cremental learning task Dj with image-mask pairs (x, y),
we have

LREG = ||fj(x)− fj−1(x)||2. (3)

The final training loss is given by

L(x, y) = LCE(ϕj(x), y) + λLREG, (4)

where LCE is either the standard cross-entropy loss or
the modified cross-entropy loss from [3]. λ is a hyper-
parameter used to weight the regularization loss. All other
components are the same as in [4]. We denote our re-
implementation of PIFS with L2 regularization loss as
PIFS(L2).

3.2. Diversity-guided Exemplar Selection with
Learned Prototypes

For methods with memory-replaying (e.g., SSUL [5]),
GAPS can work directly on top of their constructed buffers
with minimal modification. For other methods such as
PIFS [4], we propose a diversity-guided exemplar selection
process that builds a small yet diverse memory-replay buffer



D̂0 from D0 to mitigate catastrophic forgetting. Selecting
diverse examples that are representative of the base dataset
helps mitigate catastrophic forgetting, as suggested by [22].
Inspired by Bang et al. [1], we select samples distributed
uniformly along a spectrum from easy to hard for diversity.

Here, we present an algorithm (Algorithm 1) to construct
D̂0 by exploiting the Masked Average Pooling (MAP) func-
tion from [4]. Intuitively, we approximate the difficulty
of every sample by their similarity between the estimated
prototype with learned prototypes. Estimated prototypes
that are close to the learned prototype are considered easy
samples and vice versa. After building a list of base sam-
ples sorted by difficulties, we select samples from equally-
spaced intervals to ensure samples of all difficulties are se-
lected for diversity.

During the incremental learning stage, we select at most
k samples for each novel class using the same algorithm
to memorize novel classes. To maintain the size of the
memory-replay buffer, we remove old samples from the
memory-replay buffer but keep at least 80% of the samples
to be fully-annotated samples, so that we have diverse base
images for copy-pasting.

3.3. Context-guided Sampling

We hypothesize that synthesizing novel objects onto con-
textually consistent base images would result in an im-
proved learning process. For example, a TV is more likely
to appear in an apartment rather than in the middle of traf-
fic on streets, and thus a TV object should more likely be
pasted onto an image of another apartment rather than an
outdoor landscape. To guide the copy-pasting process, we

Algorithm 1 Construct Memory-replay Buffer

Require: number of exemplars n
k ← FLOOR(n/|Y0|) // Sample per class
for c from 1 to |Y0| do

Sc ← {(xi, yi) ∈ D0, c ∈ yi}
for (xi, yi) ∈ Sc do

pi ← MAP(xi, yi, c) // Pred. Proto.
si ← COSINESIMILARITY(pic, wc)

end for
Sort Sc by similarity score si
ESc ← {} // final exemplar set of class c
for j = 1, 2, . . . , k do

Lidx ← j · |Sc|/k
Uidx ← MIN(Lidx + |Sc|/k, |Sc|)
(x, y)← SAMPLE(Sc[Lidx : Uidx])
ESc ← ESc ∪ (x, y)

end for
end for
D̂0 ← UNIFORMSAMPLE(

⋃
i=1,...,|Y0| ESi, n)

design a context-guided sampling algorithm to select im-
ages from D̂0 that are contextually similar to the provided
partially-labeled images.

One way of estimating pairwise contextual similarities
between two images is to design a mapping h : X → Rm

that maps an image into a metric space, where the metrics
serve as a proxy of the contextual similarity between two
images. Here, in GAPS, we extract the knowledge of the
learned feature extractor. In incremental learning task Di,
scene embedding of image i is estimated by,

hi =
GAP(fi−1(hi))

||GAP(fi−1(hi)||2)
(5)

where GAP : RB×C×H×W → RB×C is the commonly
used global average pooling function. Two scene embed-
ding vectors hi and hj can then be compared by cosine sim-
ilarity.

To find contextually similar base images to each novel
image, we evaluate the cosine similarity of the novel image
to each of the examples in D̂0, and constuct a contextu-
ally similar subset S with |D̂0|/10 most contextually sim-
ilar examples (If interested, visualization of query samples
and their contextually-similar counterparts are included in
Fig. 4 in the supplementary material). When there are mul-
tiple novel images, we take a union of selected examples.
To allow other base scenes to be sampled to mitigate catas-
trophic forgetting, we sample from S with a probability of
α, and sample from D̂0 with a probability of 1−α, where α
is a hyperparameter set to 0.9 in our implementation. Note
that we only need to compute scene embedding once for ev-
ery image in D̂0 and incoming partially-annotated images.
Hence, the context-guided sampling algorithm poses only
minor computational overhead to GAPS.

3.4. Class-frequency-guided Probabilistic Synthesis

Now the final question is, given a fully-annotated im-
age xB and an image of a novel object xN , how frequent
should we apply copy-paste? There is a trade-off between
oversampling and undersampling. As one extreme, one can
follow [12] and always apply copy-paste augmentation to
paste novel objects onto every base image. However, this
will lead to oversampling of novel categories in the current
task, which we found to hurt the performance of existing
classes. On the other hand, rarely pasting novel instances
would lead to undersampling of the novel class. Therefore,
to guide copy-paste in the online setting, we design a syn-
thesis strategy called vRFS based on RFS (Repeat Factor
Sampling) described by [13] to perform synthesis.

To apply vRFS, we first need to compute category-wise
sampling factor rc for every c as in RFS. If c ∈ C0, we
set rc = 1 as since during the construction of D̂0 we al-
ready consider class balance by class-wise uniformly sam-
pling. If c ∈ Cj with j ≥ 1, we first compute its class



frequency by fc = nShot/|D̂0|, where nShot denotes
the number of images in Dj with at least one pixel of c.
Then, the category-wise sampling factor for c is given by
rc = MAX(1,

√
t/fc). Note that in [13], t is chosen as a hy-

perparameter to be tuned. However, we empirically found
that setting t to be the multiplicative inverse of total number
of classes, or t = 1/| ∪1,...,j Yj |, is enough to yield stable
results across different datasets and under different few-shot
settings. This eliminates the need to search a hyperparam-
eter for different settings and make our proposed method
more robust towards different task settings.

During the synthesis process, we first randomly se-
lect a novel class cN from Cj , and another class co from
∪1,...,jCj \ {cN}. We first decide if co should be pasted
onto xB . To apply vRFS resampling, we hallucinate two
virtual samples: in the first sample where copy-paste would
not be applied, the image-level sampling factor is given by
1. In the second sample where copy-paste synthesis were
to be performed, we would obtain a sample with image-
level sampling factor of ri = MAXc∈irc = rco . Thus,
the probability to synthesize class co onto xB is given by
rco/(1 + rco). We then repeat the process for the novel
class cN . Note that vRFS synthesis is applied twice for ev-
ery class, resulting in up to two pasted instances of cN in
the final image.

4. Experiments
4.1. Datasets

We follow literature in few-shot segmentation and few-
shot incremental segmentation [4, 21, 23, 25] and evaluate
our model on the PASCAL-5i dataset [23] and the COCO-
20i dataset [21]. PASCAL-5i is artificially built from the
PASCAL VOC 2012 Semantic Segmentation dataset [10]
with additional annotations from the SBD [14] dataset.
The original VOC segmentation dataset provides segmen-
tation annotations for 20 object categories. The PASCAL-
5i dataset manually splits the original dataset into 4 folds
for cross-validation. For each fold, 5 categories are selected
as novel categories, while the remaining 15 categories are
regarded as base categories. In our experiments, images
containing at least one pixel of the novel categories are
excluded from the base dataset. The construction of the
COCO-20i dataset handles the 80 thing classes in COCO
in a similar manner, where the dataset is split into 4 folds
and each fold contains 20 categories. The rest of the pro-
cess to construct the base dataset and the novel dataset in
COCO-20i is same as the PASCAL-5i dataset.

4.2. Evaluation Protocols

In the base learning stage, the model is trained using
the entire base dataset. In incremental learning stages, se-
quences of tasks are presented to the model. We use the

same evaluation protocol as proposed in [4] for fair com-
parisons, where 5 incremental learning tasks are used for
PASCAL-5i and each task contains 1 class from the novel
split. On the COCO-20i dataset, there are 4 incremental
learning tasks, and each task contains 5 classes from the
novel split.

We evaluate the performance of the model on the en-
tire validation set of the corresponding dataset after every
step. For fair comparisons with our main baseline PIFS [4],
we average results across different steps and exclude com-
pletely unseen classes from evaluation of current step. We
use three different metrics to evaluate the performance of
the model: mean Intersection-over-Union (mIoU) over base
categories, mIoU over novel categories, and harmonic mean
of the base mIoU and the novel mIoU. Unless otherwise
noted, the numbers are computed by averaging results over
splits in a cross-validating fashion.

To average out randomness due to few training samples,
we also average results over multiple runs with different set
of few-shot training samples. For experiments on splits on
PASCAL-5i, we found that averaging results over 10 runs
with randomly sampled few-shot novel images yields sta-
ble results. For COCO-20i, we found that averaging results
over 5 runs is enough to yield stable results.

4.3. Main Results

In Table 1, we evaluate various incremental segmenta-
tion methods on the PASCAL-5i dataset and the COCO-20i

dataset, and combine them with GAPS where appropriate.
Baselines. There are two main baselines we are com-

paring to. The first one is SSUL [5], which is the state-
of-the-art method in non-few-shot incremental segmenta-
tion. The second one is PIFS [4], for it is the state-of-
the-art method in few-shot incremental semantic segmen-
tation. We also report the performance of two variants of
PIFS: one is our re-implementation PIFS(L2) described
in Sec. 3.1. The other variant is PIFS(L2)+MEM, which
uses a memory-replay buffer of the same size of GAPS. To
handle partially-labeled images, we follow SSUL and per-
form pseudo-labeling on partially annotated samples before
adding them to memory for PIFS(L2)+MEM. In addition,
we also evaluate simple fine-tuning and MiB [3].

GAPS consistently increases performance under few-
shot settings. Methods combined with our proposed data
source, GAPS, consistently outperform their un-augmented
counterpart on both the base and novel categories’ perfor-
mance. It is worth noting that GAPS substantially boosts
the performance of methods that originally require fully-
annotated training images (i.e., fine-tuning and PIFS), de-
spite using only partially-annotated images now. Even for
methods that do not carry out end-to-end training and up-
date only the classifier (i.e., SSUL), GAPS still steadily in-
creases performance on novel categories. Compared to our



METHOD BASE NOVEL HM BASE NOVEL HM
PASCAL-5i 1-SHOT PASCAL-5i 5-SHOT

MIB [3] 43.9 2.6 4.9 60.9 5.8 10.5
FINETUNE* 47.2 3.9 7.2 58.7 7.7 13.6
FINETUNE+GAPS 64.2(+17.0) 16.2(+12.3) 25.9(+18.7) 66.8(+8.1) 38.1(+30.4) 48.5(+34.9)

SSUL [5] 73.9 16.4 26.8 74.8 27.8 40.5
SSUL+GAPS 74.0(+0.1) 19.9(+3.5) 31.3(+4.5) 74.9(+0.1) 30.0(+2.2) 42.8(+2.3)

PIFS* [4] 64.1 16.9 26.7 64.5 27.5 38.6
PIFS(L2)*1 64.6 19.7 30.2 57.7 24.5 34.4
PIFS(L2)+MEM 68.1 17.4 27.8 69.3 39.7 50.5
PIFS(L2)+GAPS 66.8(+2.2) 23.6(+3.9) 34.9(+4.7) 68.2(+10.5) 43.9(+19.4) 53.4(+19.0)

COCO-20i 1-SHOT COCO-20i 5-SHOT

MIB [3] 40.4 3.1 5.8 43.8 11.5 18.2
FINETUNE* 38.5 4.8 8.5 39.5 11.5 17.8
FINETUNE+GAPS 44.5(+6.0) 11.0(+6.2) 17.7(+9.5) 46.4(+6.9) 24.9(+13.4) 32.4(+14.6)

SSUL [5] 51.0 6.3 11.3 51.6 15.0 23.2
SSUL+GAPS 50.8(-0.2) 11.0(+4.7) 18.1(+6.8) 51.9(+0.3) 17.1(+2.1) 25.7(+2.5)

PIFS* [4] 40.4 10.4 16.5 41.1 18.3 25.3
PIFS(L2)*1 45.7 10.3 16.8 46.2 20.2 28.1
PIFS(L2)+MEM 47.8 11.2 18.1 46.8 22.0 29.9
PIFS(L2)+GAPS 46.8(+1.1) 12.7(+2.4) 20.0(+3.2) 49.1(+2.9) 25.8(+5.6) 33.8(+5.7)

Table 1. Methods augmented with our proposed GAPS consistently outperform their un-augmented counterparts in terms of IoU across
different few-shot settings on COCO-20i and PASCAL-5i. Methods noted with* are privileged and use fully-annotated images, others use
images with novel-class-only partial annotation. 1: our re-implementation using L2 regularization. Highest results are colored red and the
second highest results are colored blue. HM stands for harmonic mean. (Best view in color).

implemented variant PIFS(L2)+MEM, our method demon-
strates considerable relative improvement on novel cate-
gories but performs slightly worse on base categories due
to the introduction of pseudo-labeling in PIFS(L2)+MEM,
which has been shown in previous work [5] to have regular-
ization effects on base classes.

4.4. Ablation Study

In Table 2, we ablate guidance designs in GAPS to il-
lustrate how different types of guidance contribute to the fi-
nal incremental learning performance than naı̈ve copy-paste
synthesis. Though GAPS is a synthesis method that applies
to many base learning algorithms, due to the highest har-
monic mean of PIFS(L2)+GAPS on all settings, here we
use PIFS(L2)+GAPS for the ablation study.

Our diversity-guided exemplar selection method con-
sistently increases performance on base categories,
which suggests that it is capable of choosing diverse sam-
ples to construct a representative memory-replay buffer and
mitigate catastrophic forgetting to improve performance on
base classes after sequential adaptations.

Context-guided sampling steadily improves perfor-
mance on novel classes, which is consistent with findings
in previous work [8] that background context is an impor-
tant factor to consider in copy-paste synthesis. (Example
visualization is available in Fig. 4 in the supplementary ma-

terial).
Frequency-guided probabilistic synthesis boosts re-

sults on novel classes. On the other hand, it does not
influence the performance of base categories in a statisti-
cally significant manner. We take a closer look at step-wise
performance and found that the reason is due to unguided
copy-paste’s oversampling of novel classes that are being
adapted, and forgetting of classes learned in the previous
incremental learning stage and not in the memory-replay
buffer.

4.5. More Challenging Single-Instance Experiment

Though the semantic background shift proposed by [3]
relaxes the requirement to provide full segmentation an-
notations, it still requires all novel instances in images to
be annotated, which can be time-consuming to obtain in
cluttered scenes and hinder potential applications (e.g., the
cluttered motorcycle image in Figure 1). Here we con-
sider a more challenging task setting, which we term single-
instance incremental learning. Namely, for training images
provided in incremental learning stages, if there are multi-
ple instances of a novel class in the image, we assume that
only one instance will be annotated for the model.

To simulate this setting, we use the instance-level seg-
mentation annotation provided by the COCO dataset to en-
force only annotation of one novel instance in every im-



MEM COPY-PASTE F-GUIDE D-GUIDE C-GUIDE BASE NOVEL HM
— —* — — — 46.2(± 0.3) 20.2(± 0.7) 28.1(± 0.3)

✓ —* — — — 49.3(± 0.2) 19.4(± 0.7) 27.9(± 0.3)

✓ ✓ — — — 47.0(± 0.2) 19.8(± 0.6) 27.8(± 0.3)

✓ ✓ ✓ — — 47.2(± 0.2) 25.2(± 0.6) 32.9(± 0.3)

✓ ✓ ✓ ✓ — 48.2(± 0.2) 25.0(± 0.7) 32.9(± 0.3)

✓ ✓ ✓ ✓ ✓ 49.1(± 0.2) 25.8(± 0.6) 33.8(± 0.3)

Table 2. Ablation study of components in GAPS on PIFS(L2) on the COCO-20i dataset under 5-shot setting. Note that when only combined
with the memory-replay buffer, the base IoU is higher because model has access to additional full annotations. When diversity guidance
(D-guide) is disabled, D̂0 consists of random examples from the base dataset, resulting in worse base performance. When context guidance
(C-guide) is disabled, a base image is uniformly sampled. When frequency guidance (F-guide) is disabled, a novel instance is sampled
uniformly and is always pasted onto the base image. 95% confidence intervals over 20 trials are reported assuming that trial results are
normally distributed. *: privileged. use fully-annotated masks when copy-paste is turned off.

METHOD BASE NOVEL HM BASE NOVEL HM
ALL INSTANCES SINGLE-INSTANCE ONLY

PIFS(L2)† 46.2 20.2 28.1 46.1 (-0.2%) 17.6 (-12.9%) 25.4 (-9.6%)
PIFS(L2)+GAPS 49.1 25.8 33.8 49.2 (+0.2%) 25.1 (-2.7%) 33.2 (-1.8%)

Table 3. Performance of pseudo-labeling methods and GAPS under the more challenging single-instance learning setting on COCO-20i

5-shot. Only 1 novel instance out of potentially many instances in individual training images is annotated. The pseudo-labeling baseline,
PIFS(L2)†, yields substantially worse performance; whereas PIFS(L2)+GAPS has only minor performance decreases.

age is available to the model. Since state-of-the-art incre-
mental segmentation approaches use pseudo-labeling [5],
we design a method PIFS(L2)†, which simulates combin-
ing PIFS(L2) with pseudo-labeling to cope with partially-
annotated sample. Here we allow PIFS(L2)† to be privi-
leged and have access to additional information – the anno-
tation of other non-novel background pixels – to simulate
an oracle pseudo-labeling model which perfectly segments
learned classes but recognize unseen novel classes as back-
ground.

The results are given in Table 3. We can observe that the
pseudo-labeling baseline, PIFS(L2)†, yields substantially
worse performance when the model receives single-instance
annotations despite having privileged access. We reason
this is due to noisy labels generated by the pseudo-labeling
process, where novel instances are incorrectly labeled as
background. On the contrary, PIFS(L2)+GAPS shows only
a minor performance decrease with single instances. This
highlights the potential of copy-paste synthesis as an al-
ternative to the existing pseudo-labeling paradigm to cope
with the more realistic single-instance setting and robust-
ness against false negative annotations.

More results and visualization. Due to space limits, we
kindly refer readers to the supplementary material for more
quantitative results that justify our design choices such as
memory-replay buffer strategies and vRFS over other base-
lines. In addition, visualized qualitative results of sample
segmentation and contextually-similar set construction can
also be found in the supplementary material.

5. Conclusion and Discussion
In this paper, we demonstrate how the judicious use of

copy-paste dramatically boosts the performance of incre-
mental segmentation methods under the few-shot setting
and enables learning with partially-annotated images. Our
proposed GAPS technique selects representative exemplars
in the memory-replay buffer and addresses the problems of
class imbalance and contextual mismatch in synthesis.

In future work, we are interested in further application of
copy-paste as a synthesis technique to cope with the back-
ground shifting problem for incremental segmentation. We
believe that copy-paste can serve as a promising alterna-
tive to pseudo-labeling and modified loss to enable learn-
ing on partially-annotated images. We also believe that fur-
ther optimizing exemplar selection and sampling strategies
can lead to better guidance and lead to even better perfor-
mance. Finally, the ability to learn with as few as one an-
notated instance in an image raises several intriguing pos-
sibilities. For example, integrating our work with learning-
based interactive segmentation will enable human operators
to continually and adaptively teach novel classes and correct
failed predictions. This workflow has many interesting ap-
plications such as robot teleoperation where sparse annota-
tions are preferable. Learning with weaker annotations, like
bounding boxes or single clicks, and even self-supervision,
is also an interesting direction to explore.
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