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Extraterrestrial autonomous lander missions increasingly demand adaptive capabilities to
handle the unpredictable and diverse nature of the terrain. This paper discusses the deployment
of a Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa) trained model for terrain
scooping tasks in Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA Jet Propulsion
Laboratory. The CoDeGa-powered scooping strategy is designed to adapt to novel terrains,
selecting scooping actions based on the available RGB-D image data and limited experience. The
paper presents our experiences with transferring the CoDeGa model trained on a low-fidelity
testbed to the high-fidelity OWLAT evaluating the feasibility of transferring the model to similar
systems. In addition, it also validates the model’s performance in novel, realistic environments,
and shares the lessons learned from deploying learning-based autonomy algorithms for space
exploration. Experimental results from OWLAT substantiate the efficacy of CoDeGa in rapidly
adapting to unfamiliar terrains, effectively making autonomous decisions under considerable
domain shifts, thereby endorsing its potential utility in future extraterrestrial missions.

I. Introduction
The exploration of ocean worlds stands as a pivotal element in our solar system exploration, encompassing critical

research objectives including the quest for potential signs of life and the comprehensive understanding of conditions
fostering habitability [1], [2], [3]. Past lander and rover missions including the Mars exploration program [4] and
the Perseverance rover mission [5] are human-in-the-loop systems with expert teams on Earth supervising the terrain
sampling process and controlling them based on the collected data. However, unlike Mars missions, many of the ocean
world missions are anticipated to have short durations, on the order of tens of days, due to the intensity of the radiation
environment, adverse thermal conditions, low availability of solar energy, and using battery as the sole power source
for cost and planetary protection reasons [6]. The limited mission duration combined with the long communication
delays between Earth and the ocean worlds necessitates a high degree of autonomy for the success of these time-critical
missions [7].

Autonomy in terrain sampling missions is challenging due to the high degree of uncertainty in the surface topology
at the landing site, terrain material properties, composition, and appearance. Constraints on the number of samples
that can be analyzed in-situ, coupled with the risk of system failures, further limits the extent of exploration [8]. Any
realistic sampling strategy needs to be able to make decisions under uncertainty and rapidly adapt to the environment
to maximize the scientific return from the mission. To navigate these challenges, our prior work [9] proposed Deep
Meta-Learning with Controlled Deployment Gaps (CoDeGa), an adaptive scooping strategy that uses deep Gaussian
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process trained with a novel meta-learning approach. CoDeGa learns online from very limited experience on target
terrains despite large domain shifts from the training set. These prior experiments were conducted on a low-fidelity
testbed at the University of Illinois Urbana-Champaign (UIUC) designed to rapidly collect large-scale data for training
and testing the models on a wide range of terrains.

Building upon this foundational work, the next crucial step is to validate and refine our strategy within a more
sophisticated and representative environment. The Ocean Worlds Lander Autonomy Testbed (OWLAT) [10] at NASA
Jet Propulsion Laboratory (JPL) provides such an environment. OWLAT is a high-fidelity testbed developed to validate
autonomy algorithms for future ocean world missions. It serves as a state-of-the-art platform for simulating various
potential future planetary missions over a wide range of dynamic environments, including surface operations on small
bodies where recreating the dynamics in low gravity is critical. By integrating CoDeGa with OWLAT, we aim to assess
the robustness of our autonomy algorithms in conditions that closely mimic those of actual extraterrestrial landscapes,
thereby bridging the gap between preliminary tests and real-world deployment.

In this paper, we report our experiences deploying the CoDeGa-trained adaptive scooping model on the OWLAT
testbed. Our contribution is three-fold: (1) we assess the feasibility of transferring the model across systems with
similar sensor suites, end-effectors, and primitive actions, (2) we validate the model’s adaptability in novel, realistic
environments and (3) we share the lessons learned from designing and deploying learning-based autonomy algorithms
in the context of space exploration. Experimental results provide strong evidence that CoDeGa-trained model adapts
to the significant domain shifts presented by the OWLAT testbed, reinforcing its applicability and promising role in
autonomous terrain sampling for future off-world missions.

II. Preliminaries and Background
This section describes the scooping problem setting in detail and provides a brief overview of the solution approach

using the CoDeGa-trained model as proposed in [9]. We also highlight the differences between the UIUC testbed and
OWLAT and the importance of deploying and validating the solution approach on the OWLAT testbed.

A. Scooping Problem
We study the problem of scooping in which the goal is to collect high-volume samples from the lander’s workspace

with a limited budget of attempts. The problem is formulated as a sequential decision-making problem where the robot
observes the terrain RGB-D image 𝑜 ∈ O, uses a scooping policy to apply action 𝑎 ∈ A(𝑜) where A(𝑜) is a discrete set
of parameterized scooping motions dependent on the RGB-D image, and receives reward 𝑟 ∈ R, which is the scooped
volume.

Given a target terrain 𝑇∗, the robot’s goal is to find a series of scooping motions that maximize the total reward from
scoops across the first 𝑘 attempts. During the 𝑛-th attempt, for 𝑛 ≤ 𝑘 , the robot has access to the history of scoops on
this terrain 𝐻 = {(𝑜 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ) | 𝑗 = 1, . . . , 𝑛 − 1}. The robot also has access to prior scooping experience, which consists
of a set of 𝑀 terrains {𝑇1, . . . , 𝑇𝑀 }, and a training dataset 𝐷𝑖 = {(𝑜 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ) | 𝑗 = 1, . . . , 𝑁𝑖} of past scoops and their
rewards for each terrain 𝑖 = 1, ..., 𝑀 .

For a terrain, we suppose a latent variable 𝛼 characterizes its composition, material properties, and topography,
which are only indirectly observed. Let 𝛼∗ characterize 𝑇∗ and 𝛼𝑖 characterize 𝑇𝑖 for 𝑖 = 1, . . . , 𝑀. Moreover, the
observation is dependent on the latent variable and an action’s reward is an unknown function of the action and latent
variable. Standard supervised learning applied to model 𝑟 ≈ 𝑓 (𝑜, 𝑎) will work well when 𝛼∗ is within the distribution of
training terrains and 𝛼∗ is uniquely determined by the observation 𝑜 or the reward is not strongly related to unobservable
latent characteristics. However, when 𝑇∗ is out of distribution or the observation 𝑜 leaves ambiguity about latent aspects
of the terrain that affect the reward, the performance of the learned model will degrade.

Online learning from 𝐻 has the potential to help the robot perform better on 𝑇∗. We now describe an adaptive online
learning approach that can adapt to 𝑇∗ despite large domain shifts from the training set.

B. Adaptive Scooping using CoDeGa-trained Model
The solution approach proposed in [9], Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa), leverages

a deep Gaussian process (GP) model to capture the relationship between the observation-action pair (𝑜, 𝑎) and the
reward 𝑟. The deep Gaussian process model employs deep mean functions and deep kernels where the input to the
GP kernel is transformed by a neural network. We note that, in addition to the observation-action pair, the model is
also conditioned on the online support set that contains the history of previous scoops and their outcomes on the same
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Fig. 1 Overview of the CoDeGa-trained model with deep mean, deep kernel, and feature encoder modules.

terrain. It’s important to differentiate the definition of the term deep GP in [9] from its other usage in the literature
where it can also refer to deep belief networks constructed from compositions of GP models [11]. In the context of a
scooping task, this model predicts the scooped volume given an input consisting of a local patch of an RGB-D image
and action parameters, as illustrated in Figure 1.

In the CoDeGa training procedure, the training terrains are split into mean and kernel training sets containing
different materials. Doing so encourages the kernel to encounter residuals representative of those in out-of-distribution
tasks. The deep mean is first trained on the mean training set to minimize error, and the GP kernel is then trained on
the residuals of the deep mean model applied to the kernel training set. This process is repeated, similar to 𝑘-fold
cross-validation, with a common kernel trained over aggregated losses across folds. The strength of CoDeGa lies in its
ability to generate a model that performs well under deployment gaps, which are common in real-world applications.

Given a model to robustly predict the scooped volume, [9] employs a Bayesian optimization approach for selecting
the scooping action. Rather than simply using the mean prediction of the model, it utilizes an acquisition function that
also takes uncertainty into account. This function, in essence, serves as a scoring system that guides the selection of
actions and encourages the exploration of actions with uncertain outcomes, allowing for a more robust performance
under varying conditions.

The CoDeGa-based scooping strategy, while effective, requires a large amount of data across different terrains for
training the deep mean and kernel. In the next section, we describe the UIUC testbed designed to collect such data with
minimal human supervision and the different terrains and compositions on which the data is collected.

C. UIUC Testbed
The data collection testbed at the University of Illinois at Urbana-Champaign is designed for large-scale data

collection and testing of learning-based approaches for scooping tasks. The setup includes a UR5e arm with a scoop
mounted on the end-effector, an overhead Intel RealSense L515 RGB-D camera, and a wheeled simulant bin that is
approximately 0.9 m x 0.7 m x 0.2 m. A scoop action in this setup is a parameterized trajectory for the scoop end-effector
tracked by an impedance controller. Figure 2 shows an illustration of the testbed.

Fig. 2 Comparison of the UIUC testbed (left) and the Ocean Worlds Lander Autonomy Testbed (OWLAT)
(right).

A terrain is defined as a unique composition of one or more materials. The setup uses multiple wheeled simulant
bins to parallelly collect data in one bin and set up a new terrain in another that can be quickly swapped. For each new
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terrain, data is collected by executing different scooping actions and measuring the volume of scooped material. A
detailed description of the different materials considered and the scoop action parameters is provided in [9].

The UIUC testbed enables rapid data collection at the cost of limited representation of the ocean world dynamics.
In the next section, we describe the OWLAT testbed designed for validating autonomy algorithms for ocean worlds
missions.

D. Ocean Worlds Lander Autonomy Testbed
The Ocean Worlds Lander Autonomy Testbed (OWLAT) [10] is a testbed developed at NASA Jet Propulsion

Laboratory (JPL) to test and validate the performance of various autonomy algorithms and architectures for future
missions to ocean worlds. As shown in Figure 2, the testbed hardware consists of a 7-DOF Barrett WAM7 robotic arm
with a host of interchangeable end-effector tools representing the manipulator, an intel Realsense D415 mounted on a
pan-tilt mount for 3D perception, and force-torque sensors located at the interface between the arm and the platform and
also at the end of the arm’s wrist. The testbed also has a 6-DOF Stewart platform that is used to simulate the lander and
a simulant area that hosts the testbed’s terrains with different simulants and surface features.

OWLAT hardware is complemented by a software interface to command the manipulator and the camera along
with its pan-tilt mount for carrying out surface operations and collecting data. The force-torque sensors located at the
end of the wrist and at the interface between the arm and the Stewart platform play a critical role in replicating the
dynamical environment such landers are likely to experience on the low-gravity icy moons of Jupiter and Saturn. As
the tool interacts with the simulant in the testbed, the reaction forces measured are fed into a dynamics model of the
system. The computed motion is imposed on the Stewart platform in real-time. The use of high bandwidth Ethercat
force-torque sensors allows OWLAT to close the loop at 1 kHz and study test cases demonstrating how interaction with
the surface on objects with gravity as low as Enceladus (𝑔 = 0.13 m/s2) can cause the legs of the lander to lift off the
ground, thereby achieving Earth gravity compensation without the use of suspension cables and gantry mechanisms.

In the next section, we describe the process of deploying the CoDeGa-trained model on the OWLAT testbed,
highlighting the challenges of interfacing a learned model with new hardware configurations vastly different from the
training setting.

III. Deployment
This section details the process of deploying the CoDeGa-trained model on OWLAT testbed for selecting scooping

actions based on RGB-D information of the robot’s workspace and past experience in the deployed environment.
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Fig. 3 Overview of remotely deploying the adaptive scooping strategy with UIUC-trained model on OWLAT.
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Deploying the adaptive scooping strategy with the CoDeGa-trained model involves taking a sequence of scooping
actions where the model adapts based on the reward from the previously executed actions. A single scooping attempt
involves (i) collecting RGB-D data capturing the current state of the simulant bin, (ii) passing the data and the set of all
candidate scoop actions to the client, (iii) evaluating the candidate actions using the model, taking into account the
history of previous actions and their outcomes, (iv) selecting an action from the candidate set based on the model’s
evaluations, (v) executing the selected action on the robot, (vi) measuring the scooped volume, and (vii) recording the
outcome along with the executed action and corresponding observation in the online support set.

Deploying the scooping strategy, therefore, requires the testbed to provide (i) a simulant bin with testing terrains, (ii)
an interface to capture RGB-D data of the simulant bin, (ii) scoop action primitives that are parameterized similar to
UIUC testbed, and (iii) a mechanism to measure the scooped volume.

Figure 3 shows an overview of the deployment process with the OWLAT testbed. OWLAT provides a ROS interface
with access to the RGB-D camera data and ROS actions over the ROS middleware. We implemented ROS actions that
allow us to execute scoop actions parameterized similar to the UIUC testbed. The RGB-D data captured by the camera
is passed to the client over the ROS middleware. The deployment client preprocesses the RGB-D data and passes it
to the CoDeGa-trained model along with the candidate actions. The decision maker then decides the next action to
execute based on the model’s evaluations and sends the action to the testbed over the ROS middleware. The testbed
executes the action on the robot and measures the scooped volume. Given that the testing on OWLAT involves far fewer
overall scooping attempts when compared to the data collection process in the UIUC testbed, we manually measure the
scooped volume. We note that a deployment-ready ocean world mission is expected to include the instrumentation to
analyze the scientific value of the scooped material, thereby addressing the issue of scooped volume measurement.

We now discuss in detail the steps involved in processing RGB-D data to be compatible with the CoDeGa-trained
model and generating the candidate action set that can be easily implemented on any robotic system with a scoop
end-effector.

A. Processing RGB-D Data
The CoDeGa-trained model utilizes a CNN-based feature encoder to extract relevant information from the RGB-D

data. While effective, these encoders are susceptible to variations in input data, requiring a degree of consistency in
feature scale and camera orientation relative to the training set for optimal performance. The UIUC testbed standardizes
data capture across materials with varying feature scales by using a static overhead RGB-D camera, thereby streamlining
data collection and preprocessing by minimizing environmental inconsistencies.

In contrast, real-world systems rarely offer such controlled conditions. For example, in the OWLAT testbed, the
RGB-D camera is mounted on a pan-tilt unit at the base of the robot, capturing data from this unique perspective, as
shown in Figure 2. Additionally, real-world data is often further complicated by variations in camera resolution and
quality across systems, and it commonly includes noise, occlusions, and other artifacts.

Reprojection
Inpainting

and 
Filtering

Fig. 4 Overview of the steps involved in processing the RGB-D data captured by the OWLAT testbed.

To align the OWLAT data with the training conditions of the CoDeGa model, we developed a preprocessing
pipeline (shown in Figure 4). This pipeline includes (i) reprojecting the point cloud to a top-down view to emulate the
UIUC testbed perspective, (ii) inpainting to fill in gaps in the RGB and depth data while accounting for occluded and
out-of-range regions, and (iii) using system state and constraints to filter out anomalies. The resulting images are then
used to produce localized image patches based on the action parameters.

In the next section, we discuss how our choice of parameterized motion primitives as actions enables us to easily
deploy the CoDeGa-trained model on any robotic system with a scoop end-effector. Additionally, we detail our approach
of generating valid candidate actions while accounting for system constraints.

5



B. Generating Action Candidates
In our implementation, the scoop action is a motion primitive characterized by an initial 𝑥, 𝑦 position, the yaw angle

𝜃 of the scoop, the scooping depth 𝑑, and the stiffness parameter 𝑏. The z-coordinate is deduced from the depth map at
the outset of the action. This action primitive follows the parameterized trajectory described in [9], which is executed via
an impedance controller. By defining the action in the end effector space, we maintain a consistent action interpretation
across varied systems. Collaboration with the OWLAT team has allowed for the adoption of the same trajectory for the
scoop action primitive as established in [9] for deployment. Moreover, empirical evidence from [9] indicates that higher
stiffness values yield superior performance on diverse terrains; consequently, we fix the stiffness parameter 𝑏 to ’high’
value within the OWLAT action primitive to leverage these observed benefits.

Fig. 5 Illustration of the candidate action set generation process using OWLAT testbed data.

To synthesize the set of candidate actions, we use the processed depth data and system constraints to delineate
regions in the simulant bin amenable to scooping. Within these identified regions, we establish a uniform grid to
represent potential action locations. At each grid point, we evaluate eight possible yaw angles—excluding any that are
deemed infeasible—coupled with four distinct scooping depths (𝑑 values of 0.2 cm, 0.4 cm, 0.6 cm, and 0.8 cm) and a
single ’high’ stiffness value (𝑏). We note that the size of the resultant action set is dynamic, as it adjusts with the changes
in the environment. For each candidate action, we generate corresponding RGB and depth image patches centered at
the action 𝑥, 𝑦 and aligned with the scoop orientation 𝜃, as illustrated in Figure 5. The image patches along with the
stiffness parameter and the selected depth value are then used to evaluate the action candidate, as illustrated in Figure 1.

The next section describes the experiments conducted on the OWLAT testbed to evaluate the performance of the
CoDeGa-trained model.

IV. Experimental Evaluation and Discussion
We perform the experiments using an active remote connection with the OWLAT testbed operating at the Jet

Propulsion Laboratory (JPL), Pasadena, CA, and the CoDeGa-trained model deployed for inference at the University of
Illinois at Urbana-Champaign (UIUC), Champaign, Illinois. Table 1 lists all the materials used for training the model
along with their corresponding physical properties. For evaluation, we use a terrain designed by the OWLAT team with
two out-of-distribution materials, Comet and Regolith. Comet is an unscoopable composition of grey comet simulant
material [12] surrounded by 3D printed PLA features with rugged terrain features from a 3D scan of devil’s golf course
in Death Valley National Park, California painted to match the Regolith’s color. Regolith is a fine sand-like material that
is visually distinct from the sand used in training. The two materials are composed together to create a hypothetical
representation of the ocean world terrain, as depicted in Figure 4.

Following the experimental procedure in [9], we compare the proposed method to the Non-adaptive baseline
(Non-Adaptive), i.e. only the deep mean component of the CoDeGa-trained model, and a volume maximizing (Vol-Max)
policy, where the action is chosen to maximize the intersection between the scoop’s swept volume and the terrain
following a strategy proposed in the excavation literature [13].

We conduct three iterations of the experiment using each method across three different scenarios, each featuring
varying terrain topologies. Scenarios 1 and 2 consist of flat Regolith regions emphasizing the unscoopable Comet
areas, with minor terrain features in the Regolith region that occur naturally during resets. In Scenario 3, the scoopable
Regolith region is designed with terrain features that have heights comparable to those of the unscoopable Comet
regions. The depth map in Figure 6 illustrates the terrain topology for Scenario 3, where the three circular green areas
represent mounds created in the regolith material.

The objective is to maximize the total volume of material scooped in 𝑘 = 5 attempts. Given that only one of the
two materials in the testing terrain is scoopable, we measure mass in each attempt rather than volume to enhance
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Table 1 Materials used in experiments, categorized by training and testing sets, with U.S. quarter coin for scale.

Training Testing
Sand

fine play sand, ≪ 1 mm
Pebbles

rocks, 0.8 – 1.0 cm
Slate

flat rocks, 2.0–4.0 cm
Gravel

rocks, 1.5–3.0 cm
Comet

comet simulant, unscoopable

Paper Balls
crumpled paper, 4.0 – 6.0 cm

Corn
dry corn kernels, 0.3–0.7 cm

Shredded Cardboard
cardboard, 1.0 – 8.0 cm

Mulch
red wood landscape mulch

Regolith
fine sand, 0.1 mm – 0.5 mm

Table 2 Results comparing CoDeGa with two baselines in OWLAT testbed. Higher scooped mass is better.

Vol-Max (gm) Non-Adaptive (gm) CoDeGa (gm)

Scenario 1 0.0 3.5 52.2
Scenario 2 0.0 18.8 64.2
Scenario 3 5.6 43.6 75.4

Overall 1.9 22.0 63.9

measurement accuracy and ease. This change is justified given that mass and volume are equivalent due to the direct
proportionality between the scooped mass and the scooped volume in the context of our testing environment. We use
the average scooped mass over a run as the metric for comparing the efficacy of different methods. Within a run, should
robot trajectory planning for a scooping action fail, the subsequent highest scoring action is selected until planning
succeeds. We use the candidate action set outlined in Section III.B.

1

2
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5

(a) Vol-Max

1
2

4
5

3

(b) Non-Adaptive

1 2

5 3

4

(c) CoDeGa

Fig. 6 Example scooping attempts on the OWLAT testbed using three different methods. The cyan-to-yellow
colors represent regions with higher terrain elevations.

The average scooped mass for all methods across the three different scenarios is reported in Table 2. The CoDeGa-
trained model-based approach significantly outperforms the baseline methods in all scenarios. Figure 6 depicts the
scooping actions executed during a representative trial for each method. The Vol-Max method consistently selects
scoop locations near the Comet regions due to its inherent preference for areas with steep terrain gradients. While the
Non-Adaptive baseline initially targets the Regolith mounds, it fails to modify its policy in response to the data observed
online, eventually resorting to ineffective scooping attempts in the Comet region, akin to Vol-Max. On the other hand,
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our approach initially engages the Comet region but rapidly adapts its strategy in response to the low mass of scooped
material, shifting focus to the ’Regolith’ mounds and thereby maximizing the total scooped mass.

V. Conclusion
This paper presents the deployment of a CoDeGa-trained adaptive scooping model on the high-fidelity OWLAT

testbed. The model, originally developed on a low-fidelity UIUC testbed, was evaluated on novel terrains in OWLAT
testbed with out-of-distribution materials. Experimental results demonstrate the model’s capability to rapidly adapt to
unfamiliar environments and make effective decisions despite significant domain shifts. Specifically, the model achieved
2-3x higher average scooped mass compared to non-adaptive baselines across varying terrain topologies by adapting its
strategy online based on limited experience.

The successful deployment substantiates the potential utility of learning-based autonomy for maximizing scientific
return under uncertainty in ocean world missions. Moreover, it provides valuable insights into real-world integration
challenges, including data preprocessing and motion planning. Overall, this work endorses the feasibility of transferring
learning-based systems from idealized training settings to realistic deployment environments.
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